Theoretical investigations are carried out to study hybrid SPP wave propagation along the Chiral-Graphene-Metal (CGM) interface. The Kubo formulism is used for the physical modeling of single-layer graphene and the impedance boundary conditions approach is applied at the CGM interface to compute the dispersion relationship for hybrid SPP waves. It is demonstrated that the chirality (ξ) and chemical potential (μc) parameters can be used to modulate the resonance surface plasmon frequencies of the upper and lower propagating modes. Furthermore, the propagation bandgap between the upper and the lower modes can be tuned by changing the chirality parameter. The effect of the chemical potential (μc)and the relaxation time (τ) on the normalized propagation constant, propagation length, and the effective refractive index is studied. The present work may have potential applications in optical and chiral sensing in the terahertz frequency range.
This paper presents theoretical investigation of the electromagnetic wave tunneling and anomalous transmission around the trapped modes in a pseudochiral omega slab. The dispersion relation, the conditions of the trapped modes, and the evanescent wave coupling and tunneling in two different reciprocal pseudochiral omega slab structures are derived. The Berreman’s matrix method is applied to obtain the transmission coefficients across the pseudochiral omega slab. When the structure is perturbed, a resonance phenomenon is detected around the trapped modes. This resonance results in transmission anomalies (total transmission and total reflection) and dramatic field amplifications around the trapped modes. The number of the discrete trapped modes and then the resonance frequencies are prescribed by the parameters of the pseudochiral omega slab such as the value of the omega parameter and its orientation and the slab thickness.
In this study, at two different fifth generation (5G) low-frequency bands (3.7–4.2 GHz and 5.975–7.125 GHz) and based on nonuniform transmission lines (NTLs) theory, a compact three-quarter-wave resonators interdigital bandpass filter (IBPF) is analyzed, designed, and fabricated. The compact proposed filter is considered as a good candidate for reconfigurable 5G low-frequency bands and ultrawide band (UWB) antenna, which will reduce the size of the final RF communication system. Firstly, a uniform transmission line (UTL) IBPF at these two bands is designed and tested; then the NTL concept is applied for compactness. For both UTL and NTL IBPFs, different parametric studies are performed for optimization. At the first frequency band, size reductions of 16.88% and 16.83% are achieved in the first (symmetrical to the third resonator) and second λ/4 resonator of UTL IBPF, respectively, with up to 36.6% reduction in the total area. However, 16.46% and 16.33% size reductions are obtained in the first (symmetrical to the third resonator) and second λ/4 resonator, respectively, at the second frequency band with a 40.53% reduction in the whole circuit area. The performance of the proposed NTL IBPF is compared with the UTL IBPF. The measured reflection coefficient of the proposed NTL IBPF, S11, appears to be less than −10.53 dB and −11.27 dB through 3.7–4.25 GHz and 5.94 GHz–7.67 GHz, respectively. However, the transmission coefficient, S12 is around −0.86 dB and–1.7 dB at the center frequencies, fc= 3.98 GHz and 6.81 GHz, respectively. In this study, simulations are carried out using high-frequency structure simulator (HFSS) software based on the finite element method (FEM). The validity of the proposed theoretical schematic of this filter is proved by design simulations and measured results of its prototype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.