The proportional-integral-derivative (PID) is still the most common controller and stabilizer used in industry due to its simplicity and ease of implementation. In most of the real applications, the controlled system has parameters which slowly vary or are uncertain. Thus, PID gains must be adapted to cope with such changes. In this paper, adaptive PID (APID) controller is proposed using the recursive least square (RLS) algorithm. RLS algorithm is used to update the PID gains in real time (as system operates) to force the actual system to behave like a desired reference model. Computer simulations are given to demonstrate the effectiveness of the proposed APID controller on SISO stable and unstable systems considering the presence of changes in the systems parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.