A series of artemisinin-related endoperoxides was tested for cytotoxicity to Ehrlich ascites tumor (EAT) cells using the microculture tetrazolium (MTT) assay. Artemisinin [1] had an IC50 value of 29.8 microM. Derivatives of dihydroartemisinin [2], being developed as antimalarial drugs (artemether [3], arteether [4], sodium artesunate [5], artelinic acid [6], and sodium artelinate [7]), exhibited a somewhat more potent cytotoxicity. Their IC50 values ranged from 12.2 to 19.9 microM. The presence of an exocyclic methylene fused to the lactone ring, as for artemisitene [9], led to higher cytotoxicity than 1. From the two epimeric 11-hydroxyartemisinin derivatives, the R form 12 showed a considerably higher cytotoxicity than the S form 13. Opening of the lactone ring of 1 dramatically reduced the cytotoxicity. The ether dimer 8 of 2 was the most potent cytotoxic agent, its IC50 being 1.4 microM. The variations in cytotoxicity between the structurally related compounds mostly correlated well with the theoretical capacity of radical formation and stabilization. In some cases lipophilicity or the presence of an electrophilic moiety seemed to have a determinant influence on cytotoxicity. The artemisinin-related endoperoxides showed cytotoxicity to EAT cells at higher concentrations than those needed for in vitro antimalarial activity, as reported in the literature.
The synergistic activity of antimycobacterial constituents from Saudi plants was evaluated in combination with isonicotinic acid hydrazide (INH) against four atypical organisms, namely, Mycobacterium intracellulare, M. smegmatis, M. xenopei and M. chelonei. The potency of INH was increased four-fold, using an in vitro checkerboard method, against each mycobacteria when tested with a subtoxic concentration of the totarol, isolated from J. procera. The MIC values of totarol, ferulenol (from Ferula communis) and plumbagin (from Plumbago zeylanica) were thus lowered from 1.25-2.5 to 0.15-0.3 microg/mL due to synergism with INH. When tested against the resistant strain of M. tuberculosis H37Rv, plumbagin and 7beta-hydroxyabieta-8,13-dien-11,12-dione exhibited inhibitory activity at <12.5 microg/mL, while others were inactive at this concentration.
The two antimicrobial resorcinols malabaricone B [1] and malabaricone C [2] were isolated from mace, the dried seed covers of Myristica fragrans. Both compounds exhibited strong antifungal and antibacterial activities. Structure modifications by methylation or reduction resulted in diminished activity.
A bioassay-guided fractionation of Juniperus procera berries yielded antiparasitic, nematicidal and antifouling constituents, including a wide range of known abietane, pimarane and labdane diterpenes. Among these, abieta-7,13-diene (1) demonstrated in vitro antimalarial activity against Plasmodium falciparum D6 and W2 strains (IC(50) = 1.9 and 2.0 microg/mL, respectively), while totarol (6), ferruginol (7) and 7beta-hydroxyabieta-8,13-diene-11,12-dione (8) inhibited Leishmania donovani promastigotes with IC(50) values of 3.5-4.6 microg/mL. In addition, totarol demonstrated nematicidal and antifouling activities against Caenorhabditis elegans and Artemia salina at a concentration of 80 microg/mL and 1 microg/mL, respectively. The resinous exudate of J. virginiana afforded known antibacterial E-communic acid (4) and 4-epi-abietic acid (5), while the volatile oil from its trunk wood revealed large quantities of cedrol (9). Using GC/MS, the two known abietanes totarol (6) and ferruginol (7) were identified from the berries of J. procera, J. excelsa and J. phoenicea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.