In this paper we investigate the utility of the COI DNA barcoding region for species identification and for revealing hidden diversity within the subgenus Trichodagmia and related taxa in the New World. In total, 24 morphospecies within the current expanded taxonomic concept of Trichodagmia were analyzed. Three species in the subgenus Aspathia and 10 species in the subgenus Simulium s.str. were also included in the analysis because of their putative phylogenetic relationship with Trichodagmia. In the Neighbour Joining analysis tree (NJ) derived from the DNA barcodes most of the specimens grouped together according to species or species groups as recognized by other morphotaxonomic studies. The interspecific genetic divergence averaged 11.2% (range 2.8–19.5%), whereas intraspecific genetic divergence within morphologically distinct species averaged 0.5% (range 0–1.2%). Higher values of genetic divergence (3.2–3.7%) in species complexes suggest the presence of cryptic diversity. The existence of well defined groups within S. piperi, S. duodenicornium, S. canadense and S. rostratum indicate the possible presence of cryptic species within these taxa. Also, the suspected presence of a sibling species in S. tarsatum and S. paynei is supported. DNA barcodes also showed that specimens from species that were taxonomically difficult to delimit such as S. hippovorum, S. rubrithorax, S. paynei, and other related taxa (S. solarii), grouped together in the NJ analysis, confirming the validity of their species status. The recovery of partial barcodes from specimens in collections was time consuming and PCR success was low from specimens more than 10 years old. However, when a sequence was obtained, it provided good resolution for species identification. Larvae preserved in ‘weak’ Carnoy’s solution (9:1 ethanol:acetic acid) provided full DNA barcodes. Adding legs directly to the PCR mix from recently collected and preserved adults was an inexpensive, fast methodology to obtain full barcodes. In summary, DNA barcoding combined with a sound morphotaxonomic framework provides an effective approach for the delineation of species and for the discovery of hidden diversity in the subgenus Trichodagmia.
Partial (DNA) sequences were collected for 2 mitochondrial loci (Srrna and Lrrna, the rrnS and rrnL rRNA genes respectively) for Schistosoma indicum group species from 4 Southeast Asian countries. The samples included 7 populations, 4 of which were previously unstudied. In 11 cases the combination of locus and population was new. The aim of the study was to provide a phylogeny based on new independent data and multiple populations (earlier studies had mostly used a common set of field samples or laboratory lines) and to examine interrelationships and phylogeography within this species group. Paraphyly of the S. indicum group was confirmed, as was the basal position of Schistosoma incognitum in the Schistosoma phylogeny. Southeast Asian Schistosoma spindale and S. incognitum populations were shown to fall into their respective con-specific cohesive groupings. Estimated divergence times for these taxa were shown to be related to Pleistocene changes in sea level and the radiation of definitive host groups. A revised phylogeographical model is proposed in the light of these findings.
BackgroundEvidence suggests that Plasmodium knowlesi malaria in Sarawak, Malaysian Borneo remains zoonotic, meaning anti-malarial drug resistance is unlikely to have developed in the absence of drug selection pressure. Therefore, adequate response to available anti-malarial treatments is assumed.MethodsHere the ex vivo sensitivity of human P. knowlesi isolates in Malaysian Borneo were studied, using a WHO schizont maturation assay modified to accommodate the quotidian life cycle of this parasite. The in vitro sensitivities of P. knowlesi H strain adapted from a primate infection to in vitro culture (by measuring the production of Plasmodium lactate dehydrogenase) were also examined together with some assays using Plasmodium falciparum and Plasmodium vivax.ResultsPlasmodium knowlesi is uniformly highly sensitive to artemisinins, variably and moderately sensitive to chloroquine, and less sensitive to mefloquine.ConclusionsTaken together with reports of clinical failures when P. knowlesi is treated with mefloquine, the data suggest that caution is required if using mefloquine in prevention or treatment of P. knowlesi infections, until further studies are undertaken.
BackgroundSchistosomiasis in humans along the lower Mekong River has proven a persistent public health problem in the region. The causative agent is the parasite Schistosoma mekongi (Trematoda: Digenea). A new transmission focus is reported, as well as the first study of genetic variation among S. mekongi populations. The aim is to confirm the identity of the species involved at each known focus of Mekong schistosomiasis transmission, to examine historical relationships among the populations and related taxa, and to provide data for use (a priori) in further studies of the origins, radiation, and future dispersal capabilities of S. mekongi.Methodology/Principal FindingsDNA sequence data are presented for four populations of S. mekongi from Cambodia and southern Laos, three of which were distinguishable at the COI (cox1) and 12S (rrnS) mitochondrial loci sampled. A phylogeny was estimated for these populations and the other members of the Schistosoma sinensium group. The study provides new DNA sequence data for three new populations and one new locus/population combination. A Bayesian approach is used to estimate divergence dates for events within the S. sinensium group and among the S. mekongi populations.Conclusions/SignificanceThe date estimates are consistent with phylogeographical hypotheses describing a Pliocene radiation of the S. sinensium group and a mid-Pleistocene invasion of Southeast Asia by S. mekongi. The date estimates also provide Bayesian priors for future work on the evolution of S. mekongi. The public health implications of S. mekongi transmission outside the lower Mekong River are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.