Today with swift growing of plastic cards industry in the world, variety and volume of data stored in the database is growing strongly, this issue reminds the growing need of banks and financial institutions in applying knowledge discovery processes on value creation services. The original approach of this paper, is step by step implementing process of data mining in real-life transaction of debit cards, with the aim of customer profiling. In this study profiling is applied with two approaches of explorative and predictive analysis. In explorative model SOM and TwoStep clustering techniques are used. Also in predictive model four decision tree techniques are applied, the C5.0, Chi-square Automatics Interaction Detection (CHAID), Quest, classification and regression. Finally, the optimal models details are more analyzed to discover the knowledge in transactions done.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.