The new Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a zoonotic pathogen that has rapidly mutated and become transmissible to humans. There is little existing data on the mutations in SARS-CoV-2 and the impact of these polymorphisms on its transmission and viral load. In this study, the SARS-CoV-2 genomic sequence was analyzed to identify variants within the 3’UTR region of its cis-regulatory RNA elements. A 43-nucleotide genetic element with a highly conserved stem-loop II-like motif (S2M), was discovered. The research revealed 32 G>U and 16 G>U/A mutations located within the S2M sequence in human SARS-CoV-2 models. These polymorphisms appear to make the S2M secondary and tertiary structures in human SARS-CoV-2 models less stable when compared to the S2M structures of bat/pangolin models. This grants the RNA structures more flexibility, which could be one of its escape mechanisms from host defenses or facilitate its entry into host proteins and enzymes. While this S2M sequence may not be omnipresent across all human SARS-CoV-2 models, when present, its sequence is always highly conserved. It may be used as a potential target for the development of vaccines and therapeutic agents.
BackgroundAnti-neoplastic agents are widely used in the treatment of cancer and some non-neoplastic diseases. These drugs have been proved to be carcinogens, teratogens, and mutagens. Concern exists regarding the possible dangers of the staff handling anti-cancer drugs. The long-term exposure of nurses to anti-neoplastic drugs is still a controversial issue. The purpose of this study was to monitor cellular toxicity parameters and gene expression in nurses who work in chemotherapy wards and compare them to nurses who work in other wards.MethodsTo analyze the apoptosis-related genes overexpression and cytotoxicity effects, peripheral blood lymphocytes obtained from oncology nurses and the control group.The resultsSignificant alterations in four analyzed apoptosis-related genes were observed in oncology nurses. In most individual samples being excavated, Bcl-2 overexpression is superior to that of Bax. Prominent P53 and Hif-1α up-regulation were observed in oncology nurses. Moreover, all cytotoxicity parameters (cell viability, ROS formation, MMP collapse, Lysosomal membrane damage, Lipid peroxidation, Caspase 3 activity and Apoptosis phenotype) in exposed oncology nurses were significantly (p < 0.001) higher than those of unexposed control nurses. Up-regulation of three analyzed apoptosis-related genes were observed in nurses occupationally exposed to anti-cancer drugs.ConclusionOur data show that oxidative stress and mitochondrial toxicity induced by anti-neoplastic drugs lead to overexpression of apoptosis-related genes in oncology nurses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.