6LiF:ZnS(Ag) micro-particle neutron detectors are a promising technology to further improve neutron detection capabilities for a variety of applications. Specifically, we have been investigating 6LiF micro-particles coated with ZnS(Ag) to increase the neutron detection efficiency, light production, and light collection efficiency when compared to the existing powder-based technology (EJ-426 from Eljen Technology). Extensive radiation and light transport simulations with single micro-particles have been performed to find the optimal 6LiF diameter and ZnS(Ag) coating thickness. Full-scale multi-particle simulations also have been performed to determine the optimal pitch (particle-to-particle distance) and detector thickness. Randomizations of 6LiF radius, ZnS(Ag) coating thickness, position of particles, as well as shape of particles and partial coating have been performed to account for possible manufacturing imperfections. EJ-426 sheets have been modeled for reference purposes by defining spherical grains of 6LiF and ZnS(Ag) and compared against experiments. The simulation results show that the coated micro-particles should dramatically increase the neutron detection efficiency, light production, and light collection efficiency when compared to the existing EJ-426 technology.
We are investigating different micro- and nano-structure approaches to neutron detection based on inorganic scintillators. Specifically, we have been assessing various neutron converter-scintillator configurations through simulations and experiments. One promising inorganic scintillator is ZnO due to its relatively high light yield[1], reasonable optical transparency in the visible region[2], and relatively low refractive index[3] compared to other Zn-based crystals such as ZnS[4]. Accurate optical data and rigid simulation tools are necessary to optimize the dimensions of the neutron converter/scintillator systems. Accurate optical data are necessary since the optical parameters of a material depend on a variety of factors, including but not limited to its morphology, crystal structure, surface quality (surface roughness), as well as the temperature at which it was manufactured. Therefore, literature data show significant discrepancy when it comes to the optical parameters for the material and it is important to accurately measure these quantities for the specific sample of interest. Neutron detection is a complex process that includes neutron transport, charged particle transport, and light transport in the active detection medium. Hence, a rigid simulation tool is required to handle all these different areas of physics with sufficient accuracy. In this work, Geant4 has been chosen to carry out the simulations of these processes. Geant4 (GEometry ANd Tracking) is a toolkit used in various applications including high energy physics, astrophysics, and radiation detection[5]. The optical simulation capabilities of Geant4 have been validated by comparing the transmission and reflection data from UV-Vis spectroscopy to the Geant4 models for different Zn-based crystals. After validating the optical response of single crystals, simulation models were constructed to model more complex structures of ZnS-based alpha detection sheets (EJ-440) from Eljen Technology. Optical parameters validated with experimental results have been used in radiation simulation in Geant4. This study will serve as a basis for our ongoing effort to optimize and manufacture an efficient and compact fast neutron detection module with microand nano-structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.