We construct Stancu-type Bernstein operators based on Bézier bases with shape parameter λ ∈ [ - 1 , 1 ] and calculate their moments. The uniform convergence of the operator and global approximation result by means of Ditzian-Totik modulus of smoothness are established. Also, we establish the direct approximation theorem with the help of second order modulus of smoothness, calculate the rate of convergence via Lipschitz-type function, and discuss the Voronovskaja-type approximation theorems. Finally, in the last section, we construct the bivariate case of Stancu-type λ -Bernstein operators and study their approximation behaviors.
In this study, we consider statistical approximation properties of univariate and bivariate λ-Kantorovich operators. We estimate rate of weighted A-statistical convergence and prove a Voronovskajatype approximation theorem by a family of linear operators using the notion of weighted A-statistical convergence. We give some estimates for differences of λ-Bernstein and λ-Durrmeyer, and λ-Bernstein and λ-Kantorovich operators. We establish a Voronovskaja-type approximation theorem by weighted A-statistical convergence for the bivariate case.
In this study, we present a link between approximation theory and summability methods by constructing bivariate Bernstein-Kantorovich type operators on an extended domain with reparametrized knots. We use a statistical convergence type and power series method to obtain certain Korovkin type theorems, and we study certain rates of convergences related to these summability methods. Furthermore, we numerically analyze the theoretical results and provide some computer graphics to emphasize the importance of this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.