This paper proposes a novel framework to regularize the highly ill-posed and non-linear Fourier ptychography problem using generative models. We demonstrate experimentally that our proposed algorithm, Deep Ptych, outperforms the existing Fourier ptychography techniques, in terms of quality of reconstruction and robustness against noise, using far fewer samples. We further modify the proposed approach to allow the generative model to explore solutions outside the range, leading to improved performance.
Cortico-muscular communication patterns reveal important information about motor control. However, inferring significant causal relationships between motor cortex electroencephalogram (EEG) and surface electromyogram (sEMG) of concurrently active muscles is challenging since relevant processes involved in muscle control are relatively weak compared to additive noise and background activities. In this paper, a framework for identification of cortico-muscular linear time invariant communication is proposed that simultaneously estimates model order and its parameters by enforcing sparsity and stationarity conditions in a convex optimization program. The experimental results demonstrate that our proposed algorithm outperforms existing techniques for autoregressive model estimation, in terms of computational speed and model identification for causality estimation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.