Power quality and energy efficiency are of great importance in motor control. The motor of any medical device needs to have a smooth torque and minimal vibration in order to maximise its energy efficiency and patient comfort. Furthermore, in rotary blood pumps, excessive energy wasted due to vibration is converted into uncontrolled movement of the mechanical parts and thus could reduce the life of the motor-pump. Besides mechanical or hydraulic origin, one of the causes of vibration in any pump is torque ripple resulting from motor phase commutation. In this paper, using relevant equipment, two extreme scenarios were examined for vibration and electrical efficiency comparison due to power quality in a blood pump: one trapezoidal control with a trapezoidal phase current output; the other a field oriented control (FOC) with a non-distorted sinusoidal phase current. The test motor-pump was the Arteriovenous Fistula Eligibility (AFE) System that is used prior to haemodialysis. The trapezoidal technique was implemented utilising the Allegro a4941 fan driver (Allegro Microsystem, 2012), and the FOC technique was implemented using the Texas Instrument digital signal processor (TMS320F28335). The aim was to reduce the energy wasted over vibration, and to achieve smooth operation of the AFE System. Vibration was measured with a one-axis accelerometer; results showed considerably lower vibration due to less current ripple associated with the FOC control as well as lower power consumption.
Critical Bucking Load (CBL) is one of the essential parameters to describe the mechanic stabilities of materials, e.g. the low-dimensional carbon nanostructures. While the CBL of pristine carbon nanotubes have been previously investigated using the quantum mechanics-based calculations, the effect of geometrical variation on the CBL of carbon nanomaterials is rarely reported since it need considerably large atomic models, which needs high computational cost. In this study, both the analytical and Finite Element (FE) methods were employed to systematically explore the impact of atomic vacancies, shapes and heterostructures on the CBLs of carbon nanomaterials with the acceptable computational cost. Our studies on the pristine CNTs first demonstrate the validity of the method we used. After that, the systems with mono-/bi-/tri-/pinole-vacancies either on nanocones, nanotube, linearly-joined nanotubes or angle-adjoined were simulated and analyzed. Our results reveal that the CBL values decrease with the increase of the aspect ratio of all considered nanomaterials. Based on the obtained results, the CBL of nanocone with the aspect ratio of 1, reduces significantly, from 50 nN to 10 nN when the aspect ratio is 3. The CBL of homogeneous, capped, and joint CNTs reduces to below 2 nN when the aspect ratio is above 14. The introduction of geometric variations can greatly affect the CBL values. The larger atomic vacancy has more serious impact on the CBLs. The most highlighted impact is for the pinhole vacancy where the CBL reduces to up to 70% of the original value. Our studies on linearly-joint and angle-joint carbon hybrids further demonstrate that the CBL can also be affected by the boundary conditions and joint structures of the hybrids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.