This article aims to appraise the effect of microstructure comprising molecular weight distribution and chemical composition distribution on the mechanical properties of high-density polyethylene (HDPE). HDPE resins were synthesized using several titanium-magnesium-supported Ziegler-Natta catalysts in the industrial gas phase reactor under the same polymerization condition. Gel permeation chromatography and crystallization elution fractionation (CEF) were conducted on the resins to characterize the molecular weight and comonomer distribution. Crystallization, thermal and rheological behavior were evaluated following differential scanning calorimetry, polarization light microscopy, and rheometric mechanical spectrometry. The resins with higher soluble fraction in trichlorobenzene below 80 C (highly branched low molecular weight chains) exhibited longer crystallization time based on the crystallization kinetic obtained from the Avrami model. Rheological determination of the molecular weight between entanglements (M e ) and the average lamella thickness based on the Gibbs-Thomson equation revealed that the entanglement density and impact strength decreased, and the average lamella thickness increased with an increase in the ratio of CEF eluted fraction below 80 C to the crystallizable fraction in the range of 80-90 C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.