BackgroundThe ability to detect disease outbreaks early is important in order to minimize morbidity and mortality through timely implementation of disease prevention and control measures. Many national, state, and local health departments are launching disease surveillance systems with daily analyses of hospital emergency department visits, ambulance dispatch calls, or pharmacy sales for which population-at-risk information is unavailable or irrelevant.Methods and FindingsWe propose a prospective space–time permutation scan statistic for the early detection of disease outbreaks that uses only case numbers, with no need for population-at-risk data. It makes minimal assumptions about the time, geographical location, or size of the outbreak, and it adjusts for natural purely spatial and purely temporal variation. The new method was evaluated using daily analyses of hospital emergency department visits in New York City. Four of the five strongest signals were likely local precursors to citywide outbreaks due to rotavirus, norovirus, and influenza. The number of false signals was at most modest.ConclusionIf such results hold up over longer study times and in other locations, the space–time permutation scan statistic will be an important tool for local and national health departments that are setting up early disease detection surveillance systems.
This outbreak of West Nile meningoencephalitis in the New York City metropolitan area represents the first time this virus has been detected in the Western Hemisphere. Given the subsequent rapid spread of the virus, physicians along the eastern seaboard of the United States should consider West Nile virus infection in the differential diagnosis of encephalitis and viral meningitis during the summer months, especially in older patients and in those with muscle weakness.
IMPORTANCE Efforts to track the severity and public health impact of coronavirus disease 2019 (COVID-19) in the United States have been hampered by state-level differences in diagnostic test availability, differing strategies for prioritization of individuals for testing, and delays between testing and reporting. Evaluating unexplained increases in deaths due to all causes or attributed to nonspecific outcomes, such as pneumonia and influenza, can provide a more complete picture of the burden of COVID-19. OBJECTIVE To estimate the burden of all deaths related to COVID-19 in the United States from March to May 2020. DESIGN, SETTING, AND POPULATION This observational study evaluated the numbers of US deaths from any cause and deaths from pneumonia, influenza, and/or COVID-19 from March 1 through May 30, 2020, using public data of the entire US population from the National Center for Health Statistics (NCHS). These numbers were compared with those from the same period of previous years. All data analyzed were accessed on June 12, 2020. MAIN OUTCOMES AND MEASURES Increases in weekly deaths due to any cause or deaths due to pneumonia/influenza/COVID-19 above a baseline, which was adjusted for time of year, influenza activity, and reporting delays. These estimates were compared with reported deaths attributed to COVID-19 and with testing data. RESULTS There were approximately 781 000 total deaths in the United States from March 1 to May 30, 2020, representing 122 300 (95% prediction interval, 116 800-127 000) more deaths than would typically be expected at that time of year. There were 95 235 reported deaths officially attributed to COVID-19 from March 1 to May 30, 2020. The number of excess all-cause deaths was 28% higher than the official tally of COVID-19-reported deaths during that period. In several states, these deaths occurred before increases in the availability of COVID-19 diagnostic tests and were not counted in official COVID-19 death records. There was substantial variability between states in the difference between official COVID-19 deaths and the estimated burden of excess deaths. CONCLUSIONS AND RELEVANCE Excess deaths provide an estimate of the full COVID-19 burden and indicate that official tallies likely undercount deaths due to the virus. The mortality burden and the completeness of the tallies vary markedly between states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.