Coronavirus (COVID-19) is a highly infectious viral disease and first appeared in Wuhan, China. Within a short time, it has become a global health issue. The sudden emergence of COVID-19 has been accompanied by numerous uncertainties about its impact in many perspectives. One of major challenges is understanding the underlying mechanisms in the spread of this outbreak. COVID-19 is spread similar to the majority of infectious diseases through transmission via relatively large respiratory droplets. The awareness of the dispersal of these droplets is crucial in not only improving methods for controlling the dispersion of COVID-19 droplets, but also in discovering fundamental mechanisms of its transmission. In this study, a numerical model is developed to study the motion of droplets expelled through the respiratory system. Based on the source of these droplets, different sizes of droplets such as large ones and aerosols, which behave differently in the environment, can be generated. In this regard, diverse sources of droplets, namely breathing, coughing, and sneezing, are considered in this analysis. Besides, the time for a single droplet to fall from a height of 1.8 m is also obtained. The results reveal that the traditional distances suggested by different sources for keeping the social distance are not enough, which is linked to different nature of the droplet generation.
Hydrodynamic cavitation is one of the major phase change phenomena and occurs with a sudden decrease in the local static pressure within a fluid. With the emergence of microelectromechanical systems (MEMS), high-speed microfluidic devices have attracted considerable attention and been implemented in many fields, including cavitation applications. In this study, a new generation of ‘cavitation-on-a-chip’ devices with eight parallel structured microchannels is proposed. This new device is designed with the motivation of decreasing the upstream pressure (input energy) required for facile hydrodynamic cavitation inception. Water and a poly(vinyl alcohol) (PVA) microbubble (MB) suspension are used as the working fluids. The results show that the cavitation inception upstream pressure can be reduced with the proposed device in comparison with previous studies with a single flow restrictive element. Furthermore, using PVA MBs further results in a reduction in the upstream pressure required for cavitation inception. In this new device, different cavitating flow patterns with various intensities can be observed at a constant cavitation number and fixed upstream pressure within the same device. Moreover, cavitating flows intensify faster in the proposed device for both water and the water–PVA MB suspension in comparison to previous studies. Due to these features, this next-generation ‘cavitation-on-a-chip’ device has a high potential for implementation in applications involving microfluidic/organ-on-a-chip devices, such as integrated drug release and tissue engineering.
During the last decade, hydrodynamic cavitation has been implemented in various applications such as energy harvesting and biomedical applications. Facile hydrodynamic cavitation methods are required for fulfilling the requirements in these applications. In this study, a new generation microfluidic device containing eight parallel micro-orifices with a new design was fabricated and tested with the purpose of intensifying the cavitating flows and early cavitation inception. The roughness elements in the micro-orifices facilitated cavitation inception. This study presents a general perspective of occurrence of different cavitating flow patterns in microscale and addresses the ambiguities about the conditions for the formation of a specific flow pattern. Cavitation inception occurred with the appearance of small bubbles emerging from roughness elements at a rather low upstream pressure in the open loop experimental setup. A reduction in the cavitation number resulted in the formation of different flow patterns such as cavitation clouds, twin cavities, sheet cavities, and bubbly flows. Having several flow patterns with different intensities all together within a single microfluidic device is the main advantage of the proposed device over the state of the art microfluidic devices. Generation of flow patterns with various released energy levels makes this proposed device a unique multi-functional platform, which can be implemented to a lab on a chip platform for applications such as nanoparticle synthesis and wound healing.
Thanks to the developments in the area of microfluidics, the cavitation-on-a chip concept enabled researchers to control and closely monitor the cavitation phenomenon in micro-scale. In contrast to conventional scale,...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.