Purpose of Review Lowering the impact of forest utilisation on the forest environment is a part of the improvement in sustainable forest management. As part of forest utilisation, timber harvesting can also cause environmental implications. The main impact of forest operations is on the soil, on regeneration and on the residual stand. The aim of the present review was to identify the state of the art in forest utilisation, identifying how and how much forest operations affect forest soil, regeneration and the remaining stand. Particular attention was paid to the level of impact and potential to limit this. Recent Findings There are a large number of publications tackling forest harvesting, but most of them do not give a comprehensive framework and they mainly focus on one or very few aspects of forest damage. In order to improve general knowledge of the impact of forest operations, it was proposed that the scope of recent findings should be examined and a compilation of the available results from different regions should be presented in one paper. Summary It was found that the least impactful machine-based forest operations were harvester-forwarder technologies, while a larger scale of damage could be expected from ground-based extraction systems (skidders) and cable yarders. Animal power, if applicable, tended to be very neutral to the forest environment. A decrease in damage is possible by optimising skid trail and strip road planning, careful completion of forest operations and training for operators. The existence of legal documents controlling post-harvesting stand damage are rare and have been implemented in only two countries; there is no post-harvesting control on soil damage and natural regeneration.
ABSTRACT:The felling and skidding damage to residual trees was investigated in a selectively cutting operation in the Caspian forest of Iran. The logging operation was performed by chainsaw and cable skidder. Prelogging, after felling and skidding operations residual tree injuries (species, DBH and damage) were inventoried by systematic plot sampling. Two types of tree damage were observed: destroyed and injured. In this study felling operations mainly injured trees whereas skidding was the main cause of destruction. The percentage of destroyed and injured residual trees by felling operations was 1.4% and 3.4%, whereas the percentage of destroyed and injured residual trees by skidding operations was 5.2% and 11.1%. About 87% of destroyed trees were found in the DBH class smaller than 22.5 cm. Maple and Alder were the most damaged trees among the other trees species. Damage to the lower bole and wood damaged intensity were the most common type of injury. To reduce the stand damage, skid trails should be planned before felling and felling directions should be predetermined. In the selection cutting management, limiting logging damage to residual trees must therefore remain a major objective.
The Caspian forests of Iran were monitored and evaluated for forest natural regeneration after logging activities for more than a decade. This large area has a substantial ecological, environmental and socio-economic importance. Ground based skidding is the most common logging method in these forests and soil compaction is the most critical consequence of this method. One of the current main topics and important emerging issue in forest research of the last decade are discussed in this study. Soil compaction has major influences on growth and/or mortality rates of forest seedlings. This study has lasted for over ten years so as to have a clear overview related to forest natural regeneration after logging activities. We monitored and evaluated physical soil properties (bulk density, penetration resistance and total porosity) and their effects on maple and beech seedlings on 10-year-old skid trails in the Iranian Caspian forests. Results obtained from evaluating the impact of skid trails within the aforementioned three soil physical parameters were significant; bulk density increased by 12.6% on log skidded routes (between two skidder tires on skid trail) and 36.1% on tire tracks, compared to non-skid trails (1.19 g/cm3), penetration resistance increased by 68% on log skidded routes and 220% on tire tracks, compared to non-skid trails (0.25 MPa), total porosity decreased by 12.8% on log skidded routes and 30.9% on tire tracks, compared to non-skid trails (54%). Among the morphological parameters, lateral root length (LRL) and root penetration depth (RPD) showed the highest decrease at soil compaction compared to the control (decrease in LRL: 60% in maple and 44% in beech; decrease in RPD: 56% in both maple and beech); the main response of growth parameters to soil compaction was found in roots (decrease in dry mass of 36% both in maple and beech); architectural parameters were also influenced by soil compaction, and the response of both seedling species was more evident in the ratio of main root to stem length (RRS) (reduction in RRS 42% in maple, 33% in beech); the ratio of RPD to main root length (RPL) also showed a great reduction (reduction in RPL 20% in maple 33% in beech). Physical soil properties, changes in other environmental properties of skid trails, created differences in beech and maple seedling growth between the skid trails and non-skid trails. This was closely related to the physiological characteristics of the two species studied. Beech seedlings reacted well to a moderate uncovering but they needed little disturbed soil, even if there was a very mixed bedding. Maple seedlings reacted better than beech seedlings to the uncovering and soil disturbance. The effects of the skid trail on morphology, growth and architecture of maple seedlings in the Hyrcanian beech forests showed that the maple, as a seedling, is a suitable species for maintaining the physical properties of skid trails after logging operations in the beech stands in the Caspian forests of Iran.
Background: Logging damage to residual trees during selection cutting may lead to serious economic losses in terms of both timber quality and diameter growth reduction. In this study, we investigated the effect of logging operations on residual tree damage and the consequence of injuries on diameter growth in an uneven-aged mixed forest dominated by beech (Fagus orientalis Lipsky). Methods: The diameter growth of 56 wounded and 56 unwounded beech trees were compared 12 years after selected logging of other trees had taken place in an Iranian Caspian forest. Results: Of total logging wounds, 25.0 % (14 wounds) were caused by felling operations and 75.0 % (42 wounds) were caused by winching operations. The reduction in diameter growth of wounded beech trees was only observed in the breast height DBH range below 55 cm. The diameter growth of wounded trees was 8.1 % lower than in unwounded trees. The vertical distance from the ground of wounding was a significant factor in diameter growth. Wounds that were larger than 200 cm 2 in area significantly reduced diameter growth of beech trees. Whether wounds were closed or open wounds had no significant effect on diameter growth but decayed wounds reduced diameter growth by 15.3 %.Conclusions: This study suggested that intensive logging wounds reduce diameter growth, especially in young beech trees. In addition to the intensity, size and position of wounds and tree age, the reduction of diameter growth was related to the ratio of wound size to stem area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.