Recent evidence suggests that probiotics can restore the mucosal barrier integrity, ameliorate inflammation, and promote homeostasis required for metabolism in obesity by affecting the gut microbiota composition. In this study, we investigated the effect of Akkermansia muciniphila and its extracellular vesicles (EVs) on obesity-related genes in microarray datasets and evaluated the cell line and C57BL/6 mice by conducting RT-PCR and ELISA assays. A. muciniphila-derived EVs caused a more significant loss in body and fat weight of high-fat diet (HFD)-fed mice, compared with the bacterium itself. Moreover, treatment with A. muciniphila and EVs had significant effects on lipid metabolism and expression of inflammatory markers in adipose tissues. Both treatments improved the intestinal barrier integrity, inflammation, energy balance, and blood parameters (i.e., lipid profile and glucose level). Our findings showed that A. muciniphila-derived EVs contain various biomolecules, which can have a positive impact on obesity by affecting the involved genes. Also, our results showed that A. muciniphila and its EVs had a significant relationship with intestinal homeostasis, which highlights their positive role in obesity treatment. In conclusion, A. muciniphila-derived EVs can be used as new therapeutic strategies to ameliorate HFD-induced obesity by affecting various mechanisms.
BackgroundMood disorders in pregnancy and post-partum period are common and considered as a public health issue. Researchers have studied the relationship between low serum vitamin D concentration and perinatal depression, although no clinical trial has been conducted on vitamin D’s effects on depression related to childbirth. This study evaluated the effect of vitamin D3 supplementation on perinatal depression scores.MethodsThis randomized clinical trial was done in pregnant women who were under prenatal care in a teaching hospital in Shiraz, Iran. The inclusion criteria were: being 18 years or older, no history of mental illness and internal diseases, a singleton live fetus, without any pregnancy complications, gestational age of 26–28 weeks upon enrollment, and depression score of 0 to 13. The Edinburgh Postnatal Depression scale was used to evaluate depression scores. A total of 169 participants were assigned to the two groups of placebo and vitamin D through block randomization design. Vitamin D group received 2000 IU vitamin D3 daily from 26 to 28 weeks of gestation until childbirth. Maternal serum 25-hydroxyvitamin D concentrations were measured at baseline and childbirth. Besides, depression scores were evaluated four times: at 26–28 and 38–40 weeks of gestation, and finally at 4 and 8 weeks after birth.ResultsThe two groups were similar in relation to baseline 25-hydroxyvitamin D concentrations. However, at childbirth, the vitamin D group had significantly higher 25-hydroxyvitamin D concentration in comparison to the control group (p < 0.001). At baseline, no correlation was observed between 25-hydroxyvitamin D concentration and depression score (r = 0.13, p = 0.09). There was no significant difference between the two study groups in relation to the baseline depression score. While, the vitamin D group had greater reduction in depression scores than the control group at 38–40 weeks of gestation (p = 0.01) also, at 4 and 8 weeks after birth (p < 0.001).ConclusionsThe present trial showed that consuming 2000 IU vitamin D3 daily during late pregnancy was effective in decreasing perinatal depression levels. We suggest further clinical trial in pregnant mothers who are at risk for postnatal depression.Trial registrationIranian Registry of Clinical Trials IRCT2015020310327N11. Date of registration: March 9th 2015.Electronic supplementary materialThe online version of this article (doi:10.1186/s12884-016-1024-7) contains supplementary material, which is available to authorized users.
Several studies have reported that the host-microbe interactions in the gut modulate the host serotonin or 5-hydroxytryptamine (5-HT) system. Here, we evaluated the effects of Akkermansia muciniphila and its extracellular vesicles (EVs) on genes pertaining to the serotonergic system in the colon and hippocampus of mice. Male C57BL/6J mice were administered viable A. muciniphila and its EVs for 4 weeks. The serotonin levels in the colon, hippocampus, and serum of mice, as well as the human colon carcinoma cells (Caco-2), were measured by ELISA assays. Also, the effects of A. muciniphila and its EVs on the expression of serotonin system genes in the colon and hippocampus were examined. A. muciniphila and its EVs may have a biological effect on the induction of serotonin levels in the colon and hippocampus of mice. Also, EVs increased the serotonin level in the Caco-2 cell line. In contrast, both treatments decreased the serotonin level in the serum. Both the bacterium and its EVs had significant effects on the mRNA expression of genes, involved in serotonin signaling/metabolism in the colon and hippocampus of mice. Moreover, A. muciniphila and its EVs affected the mRNA expression of inflammatory cytokines (Il-10 and Tnf-α) in the colon, however, there is no significant difference in inflammatory cell infiltrate in the histopathology of the colon. The presence of A. muciniphila and its EVs in the gut promotes serotonin concentration, they also affect serotonin signaling/metabolism through the gut-brain axis and may be considered in new therapeutic strategies to ameliorate serotonin-related disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.