A new aerosol particle classifier, the aerodynamic aerosol classifier (AAC), is presented and its classifying characteristics are determined theoretically. The AAC consists of two rotating coaxial cylinders rotating at the same angular velocity. The aerosol to be classified enters through a gap in the inner cylinder and is carried axially by particle-free sheath flow. The centrifugal force causes the particles between the rotating cylinders to move in the radial direction and particles of a narrow range of particle relaxation times exit the classifier through a gap in the outer cylinder with the sample flow. Particles with larger relaxation times impact and adhere to the outer cylinder and particles with smaller relaxation times exit the classifier with the exhaust flow. Thus, the aerosol is classified by particle relaxation time from which the aerodynamic equivalent diameter can easily be found. Four theoretical models of the instrument transfer function are developed. Analytical particle streamline models (with and without the effects of particle diffusion), like those often used for mobility classifiers, are developed for the case when the centrifugal acceleration field is assumed to be uniform in the radial direction. More accurate models are developed when this assumption is not made. These models are the analytical limiting trajectory model which neglects the effects of diffusion and a numerical convective diffusion model that does not. It is shown that these models agree quite well when the gap between the cylinders is small compared to the radii of the cylinders. The models show that, theoretically, the AAC has a relatively wide classification range and high resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.