The current mechanisms that drive the development of AI technologies are widely criticized for being tech-oriented and market-led instead of stemming from societal challenges. In Human-Centered AI discourses, and more broadly in Human-Computer Interaction research, initiatives have been proposed to engage experts from various domains of social science in determining how AI should reach our societies, predominantly through informing the adoption policies. Our contribution, however, seeks a more essential role for social sciences, namely to introduce discursive standpoints around what we need AI to be. With a focus on the domain of urbanism, the specifc goal has been to elicit -from interviews with 16 urban experts -the imaginaries of how AI can and should impact future cities. Drawing on the social science literature, we present how the notion of "imaginary" has essentially framed this research and how it could reveal an alternative vision of non-human intelligent actors in future cities.
CCS CONCEPTS• Human-centered computing → Empirical studies in HCI; HCI theory, concepts and models; • Computing methodologies → Philosophical/theoretical foundations of artifcial intelligence.
Moving walkways (MW) have been imagined as a possible means of transport since the late 19th century, and this system has fascinated urban planners and engineers ever since. Contrary to what has been imagined, moving walkways are only used in transportation hub corridors, and not as a main transport mode in city centers. Today however, MWs are receiving increasing attention as a possible solution to congestion and pollution, as well as a catalyst for soft mobility. This paper explores the role of moving walkways as a transport system, and it presents an optimized design of a network of MWs in a city center. We review historical MWs, current installations and future possibilities, using different perspectives, from geography to urban planning to transport engineering. We discuss the way in which MWs influence how people inhabit the urban space, and we review this system in the context of history of urban planning. Then, we describe a technological development called accelerating moving walkways (AMW), i.e. MWs able to reach a higher speed than traditional ones. We develop an optimization framework to design a network of AMWs, and we apply it to a real case study. The results of the network design are a reference useful to discuss the feasibility of the system starting from an engineering perspective. We conclude that the use of MWs can facilitate the flexibility and spontaneity typical of pedestrian movements, and this system could be integrated in the mix of urban transport modes in city centers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.