Background Blastocystis sp. is a common intestinal protist that infects humans and many animals globally. Thus far, 22 subtypes (STs) have been identified in mammalian and avian hosts. Since various STs are common to humans and animals, it was suggested that some human infections might arise from zoonotic transmission. Therefore, the aim of this study was to assess the presence of Blastocystis sp. in domestic (dogs and cats) and synanthropic animals (rats) of Fars Province, Iran, and to genetically characterize the samples. Methods A total of 400 fresh faecal samples from 154 dogs, 119 cats, and 127 rats were inspected by direct microscopy, Wheatley’s trichrome staining, in vitro culture, and 18S rRNA gene nested-PCR. Finally, sequencing and phylogenetic analyses were performed. Results Out of 400 samples, 47 (11.8%) and 61 (15.3%) samples were detected as positive by direct wet mount and culture, respectively. Molecular analysis detected a larger number of positive samples ( n = 70, 17.5%): nested-PCR showed that 29 (18.8%) dogs, 21 (17.7%) cats, and 20 (15.8%) rats were infected by Blastocystis sp. Sequence analysis of positive samples indicated the presence of zoonotic STs in all investigated host species. Specifically, ST2 (allele 9), ST3 (allele 34), ST4 (allele 94), ST7 (allele 99), ST8 (allele 21), and ST10 (allele 152) were detected in dogs; ST1 (allele 2), ST3 (allele 34), ST4 (allele 94), ST10 (allele 152), and ST14 (allele 159) were detected in cats; and ST1 (allele 2), ST3 (allele 34), and ST4 (allele 92) were detected in rats. Conclusions Our data suggest that domestic dogs and cats can serve as possible reservoirs for in-contact humans, especially those who handle shelter-resident and client-owned animals. Moreover, rats as synanthropic animals can function as a potential source of human infections. Conversely, humans can act as a source of infections to animals. These results should be reinforced in future molecular epidemiological studies.
BackgroundCutaneous leishmaniasis (CL) caused by Leishmania species, is a geographically extensive disease that infects humans and animals. CL is endemic in half of the 31 provinces of Iran, with 29,201 incidence cases reported in Fars province from 2010 to 2015. CL is polymorphic and may result in lesions characterized by different clinical features. Parasite genetic diversity is proposed to be one of the factors affecting the clinical outcome and lesion characteristics in CL patients. However, there is still very limited data regarding the genetic variation of Leishmania spp. based on the sequencing of Cytochrome b (Cyt b) gene.MethodsAll patients originated from endemic regions in Fars province. The amplification of the Cyt b gene from isolates of 100 patients with disparate clinical forms of CL was accomplished using Nested-PCR. Sequence analysis of the amplified Cyt b was used to scrutinize the genetic variations among Leishmania isolates and connect the results with clinical pictures. The clinical demonstrations were basically of two types, typical and atypical lesions. Molecular phylogenetic tree was constructed using the Neighbor-Joining method, with species/strains from this study compared to species/strains from other geographical regions.ResultsLeishmania major was identified as the predominant infecting Leishmania spp. (86% of cases), with the remainder of cases being infected by Leishmania tropica. Clinical examination of patients revealed 12 different clinical CL forms. Among Leishmania samples analyzed, five distinct haplotypes were recognized: three in L. major and two in L. tropica. We found a correlation between clinical outcomes and Cyt b sequence variation of Leishmania spp. involved. Moreover, we observed a higher presence of polymorphisms in L. major compared with L. tropica. This difference may be due to the different eco-epidemiologies of both species, with L. tropica being an anthroponosis compared to L. major, which is a zoonosis.ConclusionsThe sequence analysis of Cyt b gene from 25 L. major and L. tropica strains demonstrated genetic variability of L. major and L. tropica causing CL in southern Iran, and a feasible connection amid the genetic heterogeneity of the parasite, geographical source and clinical appearance of the disease in human was detected.
Anaplastic thyroid carcinoma is the rarest but extremely aggressive thyroid cancer subtype. This neoplasia is composed of undifferentiated tumor cells with poor prognosis and resistant to common thyroid cancer therapy. Early stage identification of this cancer for prompt treatment is very vital. Presently, cytological evaluation of fine needle aspiration biopsy (FNAB) which is known as invasive recognition assay, is the standard diagnostic method for the diagnosis of malignant thyroid tumors. Frequent studies have suggested that using the molecular biomarkers of thyroid cancer tissue alongside cytological examination, increase the accuracy of diagnostic tests. Also, these agents could be beneficial for effective target therapy and personalize medicine. In this review, the molecular biomarkers that are involved in anaplastic thyroid carcinoma in four category (gene mutation profile, epigenetic profile, microRNA profile and cancer stem cell markers) were summarized.
: High incidence of articular cartilage defects is still a major challenge in orthopedic and trauma surgery worldwide. It has also great socioeconomic effects as it is the major cause of disability in industrialized countries. These highlight the essential need for new treatments. Knowledge about the factors that have been implicated in the pathogenesis of cartilage diseases, including changes in the composition and structure of cartilaginous extracellular matrix (ECM), molecular factors and environmental signaling pathways could help the development of innovative therapeutic strategies. It is consensuses that the success of any technology aiming to repair chondral defects will be dependent upon its ability to produce tissues that most closely replicate the mechanical and biochemical properties of native cartilage. Increasing our knowledge about cartilage tissue and its molecular biomarkers could help us to find new and useful therapeutic approach in cartilage damage. This review tries to describe cartilage tissue biology in detail and discuss different available therapeutic modalities with their pros and cons. New cartilage regeneration strategies and therapies, with focusing on cell-based therapy and tissue engineering, and their underlying molecular and cellular bases will be pointed out as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.