In order to increase stabilities and controlled/sustained released of T4 phages were encapsulated within alginate beads which were then coated with chitosan, polyethylene imine (PEI). Quite high loading capacities (over 90%) were achieved in these pH-sensitive microbeads. Coating with those polycations increased significantly stability both in "simulated gastric fluid" and bile salts especially in the case of PEI coating. The tests conducted in "simulated intestinal fluid" demonstrated that phages were released from the beads which were active at basic pH in which the release rates were smaller in case of chitosan. PEI concluded to be a better coating then chitosan.
Electrochemical impedance spectroscopy (EIS) is applied for the detection of bacteria using bacteriophages as a bioprobe together with gold nanorods (GNRs). Escherichia coli -E. coli K12 was used as a model target bacteria and also for the propagation of its specific T4-phages. Gold nanorods (GNRs) were synthesized via a two-step protocol and characterized using different techniques. EIS measurements were conducted in an electrochemical cell consisting of a three electrode system. Single-use pencil graphite electrodes (PGE) were modified by the physical adsorption of GNRs to increase their interfacial conductivity and therefore sensitivity for impedimetric measurements. Therefore, interfacial charge-transfer resistance values (R ct ) sharply decreased after GNRs deposition. Phages were adsorbed on these electrodes via a simple incubation protocol at room temperature, which resulted in an increase in R ct values, which was concluded to be as a result of nonconductive phage layers. These phage-carrying GNRs-PGEs were used for impedimetric detection of the target bacteria, E. coli. Significant increases at the R ct values were observed which were attributed to the insulation effects of the adsorbed bacterial layers. This increase was even more when the bacterial concentrations were higher. In the case of the non-target bacteria Staphylococcus aureus (S. aureus), conductivity noticeable decreases (due to nonspecific adsorption).However, in the case of E. coli, the R ct value increase is time dependent and reaches maximum in about 25-30 min, then decreases gradually as a result of bacterial lysis due to phage invasion on the electrode surfaces. In contrast, there were no time dependent changes with the non-target bacteria S. aureus (no infection and no lytic activity). It is concluded that the target bacteria could be detected using this very simple and inexpensive detection protocol with a minimum detection limit of 10 3 CFU mL À1 in approximately 100 mL bacterial suspension.
This study attemps to develop bacterial detection strategies using bacteriophages and gold nanorods (GNRs) by Raman spectral analysis. Escherichia coli was selected as the target and its specific phage was used as the bioprobe. Target bacteria and phages were propagated/purified by traditional techniques. GNRs were synthesized by using hexadecyltrimethyl ammonium bromide (CTAB) as stabilizer. A two-step detection strategy was applied: Firstly, the target bacteria were interacted with GNRs in suspensions, and then they were dropped onto silica substrates for detection. It was possible to obtain clear surface-enchanced Raman spectroscopy (SERS) peaks of the target bacteria, even without using phages. In the second step, the phage nanoemulsions were droped onto the bacterial-GNRs complexes on those surfaces and time-dependent changes in the Raman spectra were monitored at different time intervals upto 40 min. These results demonstrated that how one can apply phages with plasmonic nanoparticles for detection of pathogenic bacteria very effectively in a quite simple test.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.