Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
As more renewables are integrated into the power system, capacity expansion planners need more advanced longterm decision-making tools to properly model short-term stochastic production uncertainty and to explore its effects on expansion decisions. We develop a distributionally robust generation expansion planning model, accounting for a family of potential probability distributions of wind forecast error uncertainty. Aiming to include more realistic distributions, we construct more informed moment-based ambiguity sets by adding structural information of unimodality. We include operational-stage unit commitment constraints and model the risk of operational limit violations in two distinct forms: chance and conditional value-at-risk (CVaR) constraints. In both forms, the resulting expansion planning model is a mixed-integer second-order cone program. Using a thorough out-of-sample numerical analysis, we conclude: (i) the distributionally robust chance-constrained generation expansion planning model exhibits a better out-ofsample performance only if sufficiently accurate information about the first-and the second-order moments as well as the mode location of potential distributions is available; (ii) conversely, if such accurate information is unavailable, the distributionally robust CVaR-constrained generation expansion planning model outperforms; (iii) these two models have a similar performance when unimodality information is excluded.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.