Abstract:With an expanding world, the demand for extensive road networks is increasing. As natural resources become scarce, the necessity of finding alternative resources has led to the idea of applying recycled material to pavement construction including asphalt pavements. Amongst all asphalt components, aggregate constitutes the largest part of asphalt mixtures. Therefore, the utilization of recycled material for aggregate will represent an important opportunity to save virgin material and divert material away from landfills. Because of the large amount of construction waste generation around the world, using recycled construction aggregate (RCA) in asphalt mixtures appears to be an effective utilization of RCA. However, as aggregate plays an important role in the final performance of the asphalt mixture, an understanding of their properties is essential in designing an asphalt mixture. Therefore, in this research, the properties of RCA have been evaluated through laboratory investigations. Based on the test results, it is required that combination of RCA with some other targeted waste materials be considered in asphalt mixture. This paper presents the results of an experimental study to evaluate the RCA properties as an alternative for virgin aggregate in asphalt mixture under different percentages and combination with other aggregates, such as reclaimed asphalt pavement (RAP) and basalt.
Asphalt mixtures containing recycled construction aggregates (RCA) have the problem of high bitumen absorption. This paper characterizes the effects of glass on the bitumen absorption and volumetric properties of asphalt mixtures containing 25% and 50% RCA through laboratory investigation. The materials used in the test program include C320 bitumen, RCA and recycled glass. Three glass contents of 0%, 10%, and 20% in terms of the total weight of fine aggregates are used in the mixture designs for preparing 100 mm diameter specimens containing 0%, 25% and 50% RCA, under 120 gyration cycles. Different types of tests including aggregate specification tests and volumetric analysis tests were conducted on individual aggregates and asphalt mixtures in accordance with Australian standards. The test results indicate that the glass waste can be a viable material for improving the problem of high bitumen absorption of asphalt mixtures containing RCA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.