Cancer is one of the major malignant diseases in the world. Current anti tumor agents are restricted during the chemotherapy due to their poor solubility in aqueous media, multidrug resistance problems, cytotoxicity, and serious side effects to healthy tissues. Development of targeted drug nanocarriers would enhance the undesirable effects of anticancer drugs and also selectively deliver them to cancerous tissues. Variety of nanocarriers such as micelles, polymeric nanoparticles, liposomes nanogels, dendrimers, and carbon nanotubes have been used for targeted delivery of anticancer agents. These nanocarriers transfer loaded drugs to desired sites through passive or active efficacy mechanisms. Chitosan and its derivatives, due to their unique properties such as hydrophilicity, biocompatibility, and biodegradability, have attracted attention to be used in nanocarriers. Grafting cancer-specific ligands onto the Chitosan nanoparticles, which leads to ligand-receptor interactions, has been successfully developed as active targeting. Chitosan-conjugated components also respond to external or internal physical and chemical stimulus in targeted tumors that is called environment triggers. In this study, mechanisms of targeted tumor deliveries via nanocarriers were explained; specifically, chitosan-based nanocarriers in tumor-targeting drug delivery were also discussed.
In this article, various methods including soxhlet, Bligh & Dyer (B&D), and ultrasonic-assisted B&D were investigated for the extraction of lipid from algal species Chlorella vulgaris. Relative polarity/water content and impolar per polar ratios of solvents were considered to optimize the relative proportions of each triplicate agent by applying the response surface method (RSM). It was found that for soxhlet, hexane-methanol (54-46%, respectively) with total lipid extraction of 14.65% and chloroform-methanol (54-46%, respectively) with the extraction of 19.87% lipid were the best set of triplicate where further addition of acetone to the first group and ethanol to the second group did not contributed to further extraction. In B&D, however, chloroform-methanol-water (50%-35%-15%, respectively) reached the all-time maximum of 24%. Osmotic shock as well as ultrasonication contributed to 3.52% of further extraction, which is considered to promote the total yield up to almost 15%. From the growth data and fatty acid analysis, the applied method was assessed to be appropriate for biodiesel production with regard to selectivity and extraction yield.
To investigate the effect of reactor performance/confi guration of biodiesel production on process parameters (mass & energy consumption, required facilities etc.), two diverse production processes (from vegetable oil) were implemented/designed using Aspen HYSYS V7.2. Two series reactors were taken into account where overall conversion was set to be 97.7% and 70% in fi rst and second processes respectively. Comparative analysis showed that an increase in conversion yield caused to consumption reduction of oil, methanol, cold energy and hot energy up to 9.1%, 22%, 67.16% and 60.28% respectively; further, a number of facilities (e.g. boiler, heat exchanger, distillation tower) were reduced. To reduce mass & energy consumption, mass/heat integration method was employed. Applying integration method showed that in the fi rst design, methanol, cold and hot energy were decreased by 49.81%, 17.46% and 36.17% respectively; while in the second design, oil, methanol, cold and hot energy were decreased by 9%, 60.57% 19.62% and 36.58% respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.