Self-compacting concrete (SCC) is a new concept of concrete mix which flows in a formwork and consolidates itself without the need for compaction. Effectively compacting concrete can be very difficult especially in areas with a high number of reinforcement. Millet Husk Ash (MHA) and Rice Husk Ash (RHA) are agricultural waste materials obtained from farm and burnt to ashes to discard them since they are environmental waste. This research is focused on finding the pozzolanic potentials of MHA and RHA as a mineral additive in SCC to see if it will improve its properties rather than discarding them as environmental waste. Laboratory investigations were carried out on normally vibrated concrete (NVC) and SCC using MHA and RHA as an additive at a 10 % replacement with cement. Workability tests were carried out following the BS specifications. ASTM 293 C was used for the Flexural Capacity test on the beam specimen. The Results of the workability tests using MHA and RHA as mineral additive are within the specified standard values. The compressive strength test also revealed that the SCC using MHA is about 12.8 % higher than the RHA and NVC at 28 days with densities of 2487.5, 2516.5 and 2437.5kg/m<sup>3</sup> respectively. The Modulus of Rupture (MoR) and Split Tensile strength for MHA is 0-19.2 % and 17.2-22.2 % higher than the RHA and NVC respectively. It was concluded that the improvement in the pozzolanic properties of MHA and RHA may be due to the content of Lime (CaO), Silica ((SiO<sub>2</sub>)), Alumina (Al<sub>2</sub>O<sub>3</sub>), Iron oxide (Fe<sub>2</sub>O<sub>3</sub>) being greater than 70 % and in an accordance with BS 618 code. It is concluded that the MHA and RHA can find suitable applications in the SCC as a mineral additive rather than discarding them as environmental waste.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.