Ethiopia’s economy is dominated by agriculture which is mainly rain-fed and subsistence. Climate change is expected to have an adverse impact particularly on crop production. Previous studies have shown large discrepancies in the magnitude and sometimes in the direction of the impact on crop production. We assessed the impact of climate change on growth and yield of maize and wheat in Ethiopia using a multi-crop model ensemble. The multi-model ensemble (n = 48) was set up using the agroecosystem modelling framework Expert-N. The framework is modular which facilitates combining different submodels for plant growth and soil processes. The multi-model ensemble was driven by climate change projections representing the mid of the century (2021–2050) from ten contrasting climate models downscaled to finer resolution. The contributions of different sources of uncertainty in crop yield prediction were quantified. The sensitivity of crop yield to elevated CO2, increased temperature, changes in precipitations and N fertilizer were also assessed. Our results indicate that grain yields were very sensitive to changes in [CO2], temperature and N fertilizer amounts where the responses were higher for wheat than maize. The response to change in precipitation was weak, which we attribute to the high water holding capacity of the soils due to high organic carbon contents at the study sites. This may provide the sufficient buffering capacity for extended time periods with low amounts of precipitation. Under the changing climate, wheat productivity will be a major challenge with a 36 to 40% reduction in grain yield by 2050 while the impact on maize was modest. A major part of the uncertainty in the projected impact could be attributed to differences in the crop growth models. A considerable fraction of the uncertainty could also be traced back to different soil water dynamics modeling approaches in the model ensemble, which is often ignored. Uncertainties varied among the studied crop species and cultivars as well. The study highlights significant impacts of climate change on wheat yield in Ethiopia whereby differences in crop growth models causes the large part of the uncertainties.
Climate change impact assessment along with adaptation measures are key for reducing the impact of climate change on crop production. The impact of current and future climate change on maize production was investigated, and the adaptation role of shifting planting dates, different levels of nitrogen fertilizer rates, and choice of maize cultivar as possible climate change adaptation strategies were assessed. The study was conducted in three environmentally contrasting sites in Ethiopia, namely: Ambo, Bako, and Melkassa. Future climate data were obtained from seven general circulation models (GCMs), namely: CanESM2, CNRM-CM5, CSIRO-MK3-6-0, EC-EARTH, HadGEM2-ES, IPSL-CM5A-MR, and MIROC5 for the highest representative concentration pathway (RCP 8.5). GCMs were bias-corrected at site level using a quantile-quantile mapping method. APSIM, AquaCrop, and DSSAT crop models were used to simulate the baseline (1995–2017) and 2030s (2021–2050) maize yields. The result indicated that the average monthly maximum air temperature in the 2030s could increase by 0.3–1.7 °C, 0.7–2.2 °C, and 0.8–1.8 °C in Ambo, Bako, and Melkassa, respectively. For the same sites, the projected increase in average monthly minimum air temperature was 0.6–1.7 °C, 0.8–2.3 °C, and 0.6–2.7 °C in that order. While monthly total precipitation for the Kiremt season (June to September) is projected to increase by up to 55% (365 mm) for Ambo and 75% (241 mm) for Bako respectively, whereas a significant decrease in monthly total precipitation is projected for Melkassa by 2030. Climate change would reduce maize yield by an average of 4% and 16% for Ambo and Melkassa respectively, while it would increase by 2% for Bako in 2030 if current maize cultivars were grown with the same crop management practice as the baseline under the future climate. At higher altitudes, early planting of maize cultivars between 15 May and 1 June would result in improved relative yields in the future climate. Fertilizer levels increment between 23 and 150 kg ha−1 would result in progressive improvement of yields for all maize cultivars when combined with early planting for Ambo. For a mid-altitude, planting after 15 May has either no or negative effect on maize yield. Early planting combined with a nitrogen fertilizer level of 23–100 kg ha−1 provided higher relative yields under the future climate. Delayed planting has a negative influence on maize production for Bako under the future climate. For lower altitudes, late planting would have lower relative yields compared to early planting. Higher fertilizer levels (100–150 kg ha−1) would reduce yield reductions under the future climate, but this varied among maize cultivars studied. Generally, the future climate is expected to have a negative impact on maize yield and changes in crop management practices can alleviate the impacts on yield.
Climate extremes have more far-reaching and devastating effects than the mean climate shift, particularly on the most vulnerable societies. Ethiopia, with its low economic adaptive capacity, has been experiencing recurrent climate extremes for an extended period, leading to devastating impacts and acute food shortages affecting millions of people. In face of ongoing climate change, the frequency and intensity of climate extreme events are expected to increase further in the foreseeable future. This study provides an overview of projected changes in climate extremes indices based on downscaled high-resolution (i.e., 10 × 10 km 2) daily climate data derived from global climate models (GCMs). The magnitude and spatial patterns of trends in the projected climate extreme indices were explored under a range of emission scenarios called Shared Socioeconomic Pathways (SSPs). The performance of the GCMs to reproduce the observed climate extreme trends in the base period (1983–2012) was evaluated, the changes in the climate projections (2020–2100) were assessed and the associated uncertainties were quantified. Overall, results show largely significant and spatially consistent trends in the projected temperature-derived extreme indices with acceptable model performance in the base period. The projected changes are dominated by the uncertainties in the GCMs at the beginning of the projection period while by the end of the century proportional uncertainties arise both from the GCMs and SSPs. The results for precipitation-related extreme indices are heterogeneous in terms of spatial distribution, magnitude, and statistical significance coverage. Unlike the temperature-related indices, the uncertainty from internal climate variability constitutes a considerable proportion of the total uncertainty in the projected trends. Our work provides a comprehensive insight into the projected changes in climate extremes at relatively high spatial resolution and the related sources of projection uncertainties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.