In 2002, several mooring chains of a deepwater offloading buoy failed prematurely within a very small time frame. These chains were designed according to conventional offshore fatigue assessment using API recommendations. With this first deepwater buoy application, a new mooring chain fatigue mechanism was discovered. High pretension levels combined with significant mooring chain motions caused interlink rotations that generated significant Out of Plane Bending (OPB) fatigue loading. Traditionally, interlink rotations are relatively harmless and generates low bending stresses in the chain links. The intimate mating contact that occurs during the proof loading and the high pretension of the more contemporary mooring designs have been identified as aggravating factors for this phenomenon. A Joint Industry Project (JIP), gathering 28 different companies, was started in 2007 to better understand the OPB mooring chain fatigue mechanism and propose some mooring chain fatigue design recommendations. This paper summarizes the various test programs that were implemented within the more than 6 years long project, including full scale fatigue tests on chains, a quasi static OPB stiffness measurement campaign, and tests on small samples addressing the environmental parameter influence on fatigue initiation and crack propagation stages. The main output from the FEA scope of work, performed to support the experimental tests, will also be described. Finally, the paper will address the major step that has been achieved regarding implementation of a standard practice in offshore industry using a multiaxial fatigue criterion to address OPB hotspots.
In 2002, several mooring chains of a deepwater offloading buoy failed prematurely within a very small time frame. These chains were designed according to conventional offshore fatigue assessment using API recommendations. With this first deepwater buoy application, a new mooring chain fatigue mechanism was discovered. High pretension levels combined with significant mooring chain motions caused interlink rotations that generated significant Out of Plane Bending (OPB) fatigue loading. Traditionally, interlink rotations are relatively harmless and generate low bending stresses in the chain links. The intimate mating contact that occurs due to the plastic deformation during the proof loading and the high pretension of the more contemporary mooring designs have been identified as aggravating factors for this phenomenon. A Joint Industry Project (JIP), gathering 26 different companies, was started in 2007 to better understand the Out of Plane Bending (OPB) mooring chain fatigue mechanism and to propose mooring chain fatigue design recommendations. This paper summarizes the quasi static OPB stiffness measurement campaign and the post processing work to derive the OPB interlink stiffness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.