The detection of On-Load Tap-Changer (OLTC) faults at an early stage plays a significant role in the maintenance of power transformers, which is the most strategic component of the power network substations. Among the OLTC fault detection methods, vibro-acoustic signal analysis is known as a performant approach with the ability to detect many faults of different types. Extracting the characteristic features from the measured vibro-acoustic signal envelopes is a promising approach to precisely diagnose OLTC faults. The present research work is focused on developing a methodology to detect, locate, and track changes in on-line monitored vibro-acoustic signal envelopes based on the main peaks extraction and Euclidean distance analysis. OLTC monitoring systems have been installed on power transformers in services which allowed the recording of a rich dataset of vibro-acoustic signal envelopes in real time. The proposed approach was applied on six different datasets and a detailed analysis is reported. The results demonstrate the capability of the proposed approach in recognizing, following, and localizing the faults that cause changes in the vibro-acoustic signal envelopes over time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.