A single-step synthesis of super-water-repellent oil sorbents based on cellulose acetate (CA) mats is reported in this paper. Key phenomenological mechanisms involving roughness and changes in chemistry are used to describe the change in hydrophobic behavior of the CA mats. Contact angle calculations followed by Cassie’s model apparent contact angle prediction have shown roughness alone is not capable of producing the super-hydrophobicity exhibited by as-spun mats. Fourier transform infrared spectroscopy of spin coated and electrospun mats shows a significant difference in the stretching of the hydroxyl bonds of the two materials. As it is this hydroxyl group which adds to the overall polarity of surface thus hydrophilicity of the material, we propose that the electrospinning process not only creates a rougher surface but also alters the chemistry of the electrospun cellulose acetate mats which ultimately gives rise to the reported hydrophobicity. Finally, due to their water repellent nature, and oleophilicity of the as-spun mats were tested as oil sorbent mats. The as-spun mats were capable of absorbing thirty times their weight in oil demonstrating their application for oil-water remediation.
Pure and Ce-doped TiO 2 nanoparticles were successfully synthesized in one step by means of the scalable flame spray pyrolysis (FSP) process. Complete structural and chemical characterization of these materials revealed that the majority of the nanoparticles are crystalline and spherical, ranging from 5 to 45 nm in diameter. The band gap of TiO 2 was reduced by doping with Ce from 2.43 to 3.06 eV and the Ce-TiO 2 nanoparticles exhibit a strong photoelectrical response to visible light illumination. Ce-TiO 2 nanoparticles obtained with this scalable method are trivially scalable to industrial level manufacturing, granting and enabling additional approaches for the actual application of ceramic oxide nanomaterials to combat challenges such as environmental cleanup and energy production from the visible part of solar inputs.
Rapid population growth and ever-increasing energy consumption have resulted in increased environmental pollution and energy demands in recent years. Accordingly, studies and research on innovative and efficient ways of wastewater clean-up and exploiting eco-friendly and renewable energy sources such as sunlight have become a necessity. This review focuses on recent progress with photocatalysis for water splitting capabilities. It introduces photocatalysis and hydrogen as a fuel source, before moving on to explain water splitting. Then, the criteria for ideal photocatalytic materials are discussed along with current material systems and their limitations. Finally, it concludes on the TiO2 systems and their potential in future photocatalysis research.
This article discusses electrospinning as a method for obtaining nanofibers, some of the challenges and limitations of the technique, advancements in the field, and how it may be used in key functional applications. The key drawbacks of traditional electrospinning processes include relatively slow speed of nanofiber production, low product yield, and relatively high cost. The article also addresses novel high-throughput techniques and methods designed for the scalable synthesis of nanofibers and nanofibrous mats that are of reasonable cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.