Background The liver is target following exposure to pentavalent vanadium (V5+). Doxycycline is an antioxidant that prevents the progression of disease through inhibition of lipid peroxidation. Aim The present study was designed to evaluate the protective effects of doxycycline against vanadium-induced hepatoxicity. Methods Sixty two male Sprague-Dawley rats (250–300 g) were equally divided into the following four groups: control group (received 0.2 mL of physiological saline), doxycycline control group (received 4 mg/kg body weight on day 1 and 2 mg/kg body weight daily thereafter), vanadium group (received elemental vanadium 1.5 mg/kg-body weight in distilled water), and concomitantly treated group (doxycycline + vanadium) received (doxycycline 4 mg/kg body weight on day 1 and 2 mg/kg body weight thereafter + vanadium 1.5 mg/kg body weight), all given orally for 10 consecutive days. The rats were sacrificed by decapitation 24 hours after the last dose. The liver was removed rapidly and processed for the evaluation of metabolic variables: phospholipids, cholesterol, cerebrosides, gangliosides, reduced glutathione (GSH), vitamin C, calcium, acetylcholinesterase enzyme, and lipid peroxidation. Results Vanadium administration significantly reduced (−60 g) the body weight and significantly increased (+28%) the relative liver weight compared with controls. The rats exhibited neurological function deficits. Vanadium administration decreased the concentrations of metabolic variables compared with controls, cerebrosides (−50%), cholesterol (−39%), phospholipids (−18%), GSH (−45%), and inhibited acetylcholinesterase enzyme (–48%). Gangliosides (+ 38%), vitamin C (+ 20%), and calcium (+ 80%) were increased together with an enhancement (+64%) in lipid peroxidation. The combined treatment (vanadium and doxycycline) significantly increased (+25 g) the body weight and relative liver weight of rat was significantly reduced (+5%) compared with vanadium administered group. The levels of metabolic variables were significantly reversed in this group in the following order: cholesterol (+17%), phospholipids (+7%), vitamin C (−14%), acetylcholinesterase enzyme activity (−27%) together with inhibition (−16%) of lipid peroxidation. All levels were (p < 0.05). Doxycycline presented no effect on the levels of GSH, cerebrosides, and gangliosides. Conclusion Results of this study suggested vanadium-induced oxidation of lipids and sphingolipids in hepatocytes and much of GSH was consumed against high production of reactive oxygen species. Doxycycline protected against vanadium-induced oxidative damage that could be attributed to its free radical scavenging effects on membrane-bound lipids and acetylcholinesterase enzyme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.