A family of five dinuclear lanthanide complexes has been synthesized with general formula [Ln(III)(2)(valdien)(2)(NO(3))(2)] where (H(2)valdien = N1,N3-bis(3-methoxysalicylidene)diethylenetriamine) and Ln(III) = Eu(III)1, Gd(III)2, Tb(III)3, Dy(III)4, and Ho(III)5. The magnetic investigations reveal that 4 exhibits single-molecule magnet (SMM) behavior with an anisotropic barrier U(eff) = 76 K. The step-like features in the hysteresis loops observed for 4 reveal an antiferromagnetic exchange coupling between the two dysprosium ions. Ab initio calculations confirm the weak antiferromagnetic interaction with an exchange constant J(Dy-Dy) = -0.21 cm(-1). The observed steps in the hysteresis loops correspond to a weakly coupled system similar to exchange-biased SMMs. The Dy(2) complex is an ideal candidate for the elucidation of slow relaxation of the magnetization mechanism seen in lanthanide systems.
The quest for higher density information storage has led to the investigation of Single-Molecule Magnets (SMMs) as potential molecules to be applied in materials such as hard discs. In order for this to occur, one must first design metal complexes which can retain magnetic information at temperatures where these applications become possible. This can only be achieved through answering and understanding fundamental questions regarding the observed physical properties of SMMs. While mononuclear lanthanide complexes have shown promise in obtaining high energy barriers for the reversal of the magnetisation they are limited to Single-Ion Magnet behaviour intrinsic to one metal centre with a limited number of unpaired electrons. As a way of increasing the effective anisotropic barrier, systems with higher nuclearity have been sought to increase the spin ground state of the molecule. Dinuclear complexes are presented as key compounds in studying and understanding the nature of magnetic interactions between metal ions. This tutorial review will span a number of dinuclear 4f complexes which have been critical in our understanding of the way in which lanthanide centres in a complex interact magnetically. It will examine key bridging moieties from the more common oxygen-based groups to newly discovered radical-based bridges and draw conclusions regarding the most effective superexchange pathways allowing the most efficient intracomplex interactions.
The magnetic dilution method was employed in order to elucidate the origin of the slow relaxation of the magnetization in a Dy(2) single-molecule magnet (SMM). The doping effect was studied using SQUID and micro-SQUID measurements on a Dy(2) SMM diluted in a diamagnetic Y(2) matrix. The quantum tunneling of the magnetization that can occur was suppressed by applying optimum dc fields. The dominant single-ion relaxation was found to be entangled with the neighboring Dy(III) ion relaxation within the molecule, greatly influencing the quantum tunneling of the magnetization in this complex.
The effect of electron-withdrawing ligands on the energy barriers of Single-Molecule Magnets (SMMs) is investigated. By introducing highly electron-withdrawing atoms on targeted ligands, the energy barrier was significantly enhanced. The structural and magnetic properties of five novel SMMs based on a dinuclear {Dy2} phenoxo-bridged motif are explored and compared with a previously studied {Dy2} SMM (1). All complexes share the formula [Dy2(valdien)2(L)2]路solvent, where H2valdien = N1,N3-bis(3-methoxysalicylidene) diethylenetriamine, the terminal ligand L = NO3(-) (1), CH3COO(-) (2), ClCH2COO(-) (3), Cl2CHCOO(-) (4), CH3COCHCOCH3(-) (5), CF3COCHCOCF3(-) (6), and solvent = 0.5 MeOH (4), 2 CH2Cl2 (5). Systematic increase of the barrier was observed for all complexes with the most drastic increase seen in 6 when the acac ligand of 5 was fluorinated resulting in a 7-fold enhancement of the anisotropic barrier. Ab initio calculations reveal more axial g tensors as well as higher energy first excited Kramers doublets in 4 and 6 leading to higher energy barriers for those complexes.
The electronic and magnetic properties of the complexes [Co(terpy)Cl2 ] (1), [Co(terpy)(NCS)2 ] (2), and [Co(terpy)2 ](NCS)2 (3) were investigated. The coordination environment around Co(II) in 1 and 2 leads to a high-spin complex at low temperature and single-molecule magnet properties with multiple relaxation pathways. Changing the ligand field and geometry with an additional terpy ligand leads to spin-crossover behavior in 3 with a gradual transition from high spin to low spin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.