This paper presents a novel model reference adaptive iterative learning control (ILC) for unknown continuous-time linear time-varying systems. The unknown time-varying parameters of the system are neither required to vary slowly nor to have known bounds. The system is not required to be minimum-phase, stable, controllable or observable. The input of the system is determined by a differentiator-free control law. The used reference model is time-invariant and first order and thus choosing its parameters is easily possible, even though, the system under control is high order and time variant. Almost all of the components of the system initial condition can be iteration variant. By introducing a novel kind of Lyapunov function the convergence of the proposed adaptive ILC (AILC) and achieving asymptotic tracking are proved. Also, by rigorous mathematical analysis and with the help of some mathematical key techniques such as Bellman-Gronwall lemma, it is shown that all signals and quantities in the closed-loop system are bounded in the sense of at least one norm. Finally, the effectiveness of the proposed method is verified by two simulation examples.
In this paper, two iterative learning control (ILC) approaches based on a neural iterative learning identifier (NILI) are proposed for a class of unknown time-varying nonlinear systems. Since both control and identification processes are done at the common iteration domain, so both tracking performance and identification performance are improved at each iteration simultaneously.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.