The increasing need for food in recent years means that environmental protection and sustainable agriculture are necessary. For this, smart agricultural systems and autonomous robots have become widespread. One of the most significant and persistent problems related to robots is 3D path planning, which is an NP-hard problem, for mobile robots. In this paper, efficient methods are proposed by two metaheuristic algorithms (Incremental Gray Wolf Optimization (I-GWO) and Expanded Gray Wolf Optimization (Ex-GWO)). The proposed methods try to find collision-free optimal paths between two points for robots without human intervention in an acceptable time with the lowest process costs and efficient use of resources in large-scale and crowded farmlands. Thanks to the methods proposed in this study, various tasks such as tracking crops can be performed efficiently by autonomous robots. The simulations are carried out using three methods, and the obtained results are compared with each other and analyzed. The relevant results show that in the proposed methods, the mobile robots avoid the obstacles successfully and obtain the optimal path cost from source to destination. According to the simulation results, the proposed method based on the Ex-GWO algorithm has a better success rate of 55.56% in optimal path cost.
In this study, a new hybrid metaheuristic algorithm named Chaotic Sand Cat Swarm Optimization (CSCSO) is proposed for constrained and complex optimization problems. This algorithm combines the features of the recently introduced SCSO with the concept of chaos. The basic aim of the proposed algorithm is to integrate the chaos feature of non-recurring locations into SCSO’s core search process to improve global search performance and convergence behavior. Thus, randomness in SCSO can be replaced by a chaotic map due to similar randomness features with better statistical and dynamic properties. In addition to these advantages, low search consistency, local optimum trap, inefficiency search, and low population diversity issues are also provided. In the proposed CSCSO, several chaotic maps are implemented for more efficient behavior in the exploration and exploitation phases. Experiments are conducted on a wide variety of well-known test functions to increase the reliability of the results, as well as real-world problems. In this study, the proposed algorithm was applied to a total of 39 functions and multidisciplinary problems. It found 76.3% better responses compared to a best-developed SCSO variant and other chaotic-based metaheuristics tested. This extensive experiment indicates that the CSCSO algorithm excels in providing acceptable results.
Food needs are increasing day by day, and traditional agricultural methods are not responding efficiently. Moreover, considering other important global challenges such as energy sufficiency and migration crises, the need for sustainable agriculture has become essential. For this, an integrated smart and mechanism-application-based model is proposed in this study. This model consists of three stages. In the first phase (cultivation), the proposed model tried to plant crops in the most optimized way by using an automized algorithmic approach (Sand Cat Swarm Optimization algorithm). In the second stage (control and monitoring), the growing processes of the planted crops was tracked and monitored using Internet of Things (IoT) devices. In the third phase (harvesting), a new method (Reverse Ant Colony Optimization), inspired by the ACO algorithm, was proposed for harvesting by autonomous robots. In the proposed model, the most optimal path was analyzed. This model includes maximum profit, maximum quality, efficient use of resources such as human labor and water, the accurate location for planting each crop, the optimal path for autonomous robots, finding the best time to harvest, and consuming the least power. According to the results, the proposed model performs well compared to many well-known methods in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.