Failure mode and effects analysis (FMEA) has been extensively used by wind turbine assembly manufacturers for analyzing, evaluating and prioritizing potential/known failure modes. However, several limitations are associated with its practical implementation in wind farms. First, the Risk-Priority-Number (RPN) of a wind turbine system is not informative enough for wind farm managers from the perspective of criticality; second, there are variety of wind turbines with different structures and hence, it is not correct to compare the RPN values of different wind turbines with each other for prioritization purposes; and lastly, some important economical aspects such as power production losses, and the costs of logistics and transportation are not taken into account in the RPN value. In order to overcome these drawbacks, we develop a mathematical tool for risk and failure mode analysis of wind turbine systems (both onshore and offshore) by integrating the aspects of traditional FMEA and some economic considerations. Then, a quantitative comparative study is carried out using the traditional and the proposed FMEA methodologies on two same type of onshore and offshore wind turbine systems. The results show that the both systems face many of the same risks, however there are some main differences worth considering.
Robots are increasingly used to carry out critical missions in extreme environments that are hazardous for humans. This requires a high degree of operational autonomy under uncertain conditions, and poses new challenges for assuring the robot's safety and reliability. In this paper, we develop a framework for probabilistic model checking on a layered Markov model to verify the safety and reliability requirements of such robots, both at pre-mission stage and during runtime. Two novel estimators based on conservative Bayesian inference and imprecise probability model with sets of priors are introduced to learn the unknown transition parameters from operational data. We demonstrate our approach using data from a real-world deployment of unmanned underwater vehicles in extreme environments.
State-of-charge (SOC) is one of the most critical parameters in battery management systems (BMSs). SOC is defined as the percentage of the remaining charge inside a battery to the full charge, and thus ranges from 0% to 100%. This percentage value provides important information to manufacturers about the performance of the battery and can help end-users identify when the battery must be recharged. Inaccurate estimation of the battery SOC may cause over-charge or over-discharge events with significant implications for system safety and reliability. Therefore, it is crucial to develop methods for improving the estimation accuracy of battery SOC. This paper presents an electrochemical model for lithium-ion battery SOC estimation involving the battery’s internal physical and chemical properties such as lithium concentrations. To solve the computationally complex solid-phase diffusion partial differential equations (PDEs) in the model, an efficient method based on projection with optimized basis functions is presented. Then, a novel moving-window filtering (MWF) algorithm is developed to improve the convergence rate of the state filters. The results show that the developed electrochemical model generates 20 times fewer equations compared with finite difference-based methods without losing accuracy. In addition, the proposed projection-based solution method is three times more efficient than the conventional state filtering methods such as Kalman filter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.