Background
Gait problems are an important symptom in Parkinson’s disease (PD), a progressive neurodegenerative disease. Transcranial direct current stimulation (tDCS) is a neuromodulatory intervention that can modulate cortical excitability of the gait-related regions. Despite an increasing number of gait-related tDCS studies in PD, the efficacy of this technique for improving gait has not been systematically investigated yet. Here, we aimed to systematically explore the effects of tDCS on gait in PD, based on available experimental studies.
Methods
Using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) approach, PubMed, Web of Science, Scopus, and PEDro databases were searched for randomized clinical trials assessing the effect of tDCS on gait in patients with PD.
Results
Eighteen studies were included in this systematic review. Overall, tDCS targeting the motor cortex and supplementary motor area bilaterally seems to be promising for gait rehabilitation in PD. Studies of tDCS targeting the dorosolateral prefrontal cortex or cerebellum showed more heterogeneous results. More studies are needed to systematically compare the efficacy of different tDCS protocols, including protocols applying tDCS alone and/or in combination with conventional gait rehabilitation treatment in PD.
Conclusions
tDCS is a promising intervention approach to improving gait in PD. Anodal tDCS over the motor areas has shown a positive effect on gait, but stimulation of other areas is less promising. However, the heterogeneities of methods and results have made it difficult to draw firm conclusions. Therefore, systematic explorations of tDCS protocols are required to optimize the efficacy.
Background
Fear of falling is multifactorial in etiology and is associated with falls. It has been demonstrated that foot problems increase the risk of falls in older people. Therefore, the objective of this study was to investigate the associations of foot and ankle characteristics with fear of falling and mobility in community-dwelling older people.
Method
One hundred and eighty-seven community-dwelling older adults (106 females) aged 62–90 years (mean 70.5 ± 5.2) from Isfahan, Iran, were recruited. Foot and ankle characteristics (including foot posture, range of motion, muscle strength, deformity, tactile sensation, pain and dynamic function), fear of falling (Fall Efficacy Scale International) and mobility (Timed Up and Go Test) were measured. Two multivariate linear regression analyses identified variables independently associated with fear of falling and mobility.
Results
Linear regression analysis revealed that less ankle plantarflexor muscle strength, greater pressure-time integral, foot pain, and reduced tactile sensitivity of the ankle were significantly and independently associated with increased fear of falling. The total variance explained by the model was 59%. Less ankle plantarflexor muscle strength, greater pressure-time integral, and slower centre of pressure velocity were significantly and independently associated with poorer mobility. The total variance explained by the model was 48%.
Conclusion
Several foot and ankle characteristics are associated with fear of falling and mobility in older people. Targeting these modifiable risk factors may play a role in reducing fear of falling and enhancing mobility performance in this population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.