In this paper we introduce a new parameter for a graph called the minimum universal rank. This parameter is similar to the minimum rank of a graph. For a graph G the minimum universal rank of G is the minimum rank over all matrices of the formwhere A is the adjacency matrix of G, J is the all ones matrix and D is the matrix with the degrees of the vertices in the main diagonal, and α = 0, β, γ, δ are scalars. Bounds for general graphs based on known graph parameters are given, as is a formula for the minimum universal rank for regular graphs based on the multiplicity of the eigenvalues of A. The exact value of the minimum universal rank of some families of graphs are determined, including complete graphs, complete bipartite graph, paths and cycles. Bounds on the minimum universal rank of a graph obtained by deleting a single vertex are established. It is shown that the minimum universal rank is not monotone on induced subgraphs, but bounds based on certain induced subgraphs, including bounds on the union of two graphs, are given. Finally we characterize all graphs with minimum universal rank equal to 0 and to 1.
Abstract:The zero forcing number and the positive zero forcing number of a graph are two graph parameters that arise from two types of graph colourings. The zero forcing number is an upper bound on the minimum number of induced paths in the graph that cover all the vertices of the graph, while the positive zero forcing number is an upper bound on the minimum number of induced trees in the graph needed to cover all the vertices in the graph. We show that for a block-cycle graph the zero forcing number equals the path cover number. We also give a purely graph theoretical proof that the positive zero forcing number of any outerplanar graphs equals the tree cover number of the graph. These ideas are then extended to the setting of k-trees, where the relationship between the positive zero forcing number and the tree cover number becomes more complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.