Purpose This paper aims to identify, evaluate and integrate the findings of all relevant and high-quality individual studies addressing one or more research questions about recommender systems and performing a comprehensive study of empirical research on recommender systems that have been divided into five main categories. To achieve this aim, the authors use systematic literature review (SLR) as a powerful method to collect and critically analyze the research papers. Also, the authors discuss the selected recommender systems and its main techniques, as well as their benefits and drawbacks in general. Design/methodology/approach In this paper, the SLR method is utilized with the aim of identifying, evaluating and integrating the findings of all relevant and high-quality individual studies addressing one or more research questions about recommender systems and performing a comprehensive study of empirical research on recommender systems that have been divided into five main categories. Also, the authors discussed recommender system and its techniques in general without a specific domain. Findings The major developments in categories of recommender systems are reviewed, and new challenges are outlined. Furthermore, insights on the identification of open issues and guidelines for future research are provided. Also, this paper presents the systematical analysis of the recommender system literature from 2005. The authors identified 536 papers, which were reduced to 51 primary studies through the paper selection process. Originality/value This survey will directly support academics and practical professionals in their understanding of developments in recommender systems and its techniques.
Purpose This paper aims to propose a new method for evaluating the success of the recommender systems based on customer history, product classification and prices criteria in the electronic commerce. To evaluate the validity of the model, the structural equation modeling technique is employed. Design/methodology/approach A method has been suggested to evaluate the impact of customer history, product classification and prices on the success of the recommender systems in electronic commerce. After that, the authors investigated the relationship between these factors. To achieve this goal, the structural equation modeling technique was used for statistical conclusion validity. The results of gathered data from employees of a company in Iran is indicated the impact of the customer history on the success of recommender systems in e-commerce which is related with the user profile, expert opinion, neighbors, loyalty and clickstream. These factors positively influence the success of recommender systems in ecommerce. Findings The obtained results demonstrated the efficiency and effectiveness of the proposed model in term of the success of the recommender systems in the electronic commerce. Originality/value In this paper, the effective factors of success of recommender systems in electronic commerce are pointed out and the approach to increase the efficiency of this system is applied into a practical example.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.