This study is devoted to fabricate a novel hydroxyapatite(HAp)/gelatin scaffold coated with nano-HAp in nano-rod configuration to evaluate its biocompatibility potential. The nano-HAp particles are needle and rod-like with widths ranging between 30 to 60 nm and lengths from 100 to 300 nm, respectively. Because of their higher surface area and higher reactivity, the nano-rod particles were distributed in gelatin much better than spherical and mixed shapes particles. The compressive modulus of the nano-HAp/gelatin scaffolds coated with nano-HAp was comparable with the compressive modulus of a human cancellous bone. The potential performance of the fabricated scaffolds as seeding media was assayed using mesenchymal stem cells (MSCs). MTT (3-(4,5-dimethylthiazol-2-yl)-1,5-diphenyl tetrazulium bromide) assays were performed on days 4 and 7 and the number of the cells per scaffold was determined. On the basis of this assay, all the studied scaffolds exhibited an appropriate environment in which the loaded cells appeared to be proliferated during the cultivation periods. In all fabricated composite scaffolds, marrow-derived MSCs appeared to occupy the scaffolds internal spaces and attach on their surfaces. According to the cell culture experiments, the incorporation of rod-like nano-HAp and coating of scaffolds with nano-HAp particles enabled the prepared scaffolds to possess desirable biocompatibility, high bioactivity, and sufficient mechanical strength in comparison with noncoated HAp samples. This research suggests that the newly developed scaffold has a potential as a suitable scaffold for bone tissue engineering.
Abstract:We developed collagen (COL) and collagen/beta tricalcium phosphate (COL/b-TCP) scaffolds with a b-TCP/collagen weight ratio of 4 by freeze-drying. Mouse bone marrowderived mesenchymal stem cells (BMMSCs) were cultured on these scaffolds for 14 days. Samples were characterized by physicochemical analyses and their biological properties such as cell viability and alkaline phosphatase (ALP) activity was, also, examined. Additionally, the vascularization potential of the prepared scaffolds was tested subcutaneously in Wistar rats. We observed a microporous structure with large porosity (95-98%) and appropriate pore size (120-200 mm). The COL/b-TCP scaffolds had a much higher compressive modulus (970 6 1.20 KPa) than pure COL (0.8 6 1.82 KPa). In vitro model of apatite formation was established by immersing the composite scaffold in simulated body fluid for 7 days. An ALP assay revealed that porous COL/b-TCP can effectively activate the differentiation of BMMSCs into osteoblasts. The composite scaffolds also promoted vascularization with good integration with the surrounding tissue. Thus, introduction of b-TCP powder into the porous collagen matrix effectively improved the mechanical and biological properties of the collagen scaffolds, making them potential bone substitutes for enhanced bone regeneration in orthopedic and dental applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.