This study examines the effect of board diversity on risk-taking for tourism firms and analyzes the moderating effect of board independence, CEO duality, and free cash flows in this proposed relationship. Using a composite index of board diversity and a sample of tourism firms from the US hotel, restaurant, and airline industries, we find that greater board diversity leads to lower risk-taking, measured in standard deviation of return on assets. Moreover, we report that the risk-reduction effect of board diversity is more profound when tourism firms have less board independence and less free cash flows for investments. When board diversity is decomposed into relation-oriented and task-oriented diversity attributes, we find that only the task-oriented diversity is influential in reducing firm risk-taking for tourism firms. Akin to main analysis, the board independence and free cash flows are significant moderators of the relationship between task-oriented diversity and firm risk-taking.
Purpose
This study aims to propose a risk-induced game theoretic forecasting model to predict average daily rate (ADR) under COVID-19, using an advanced recurrent neural network.
Design/methodology/approach
Using three data sets from upper-midscale hotels in three locations (i.e. urban, interstate and suburb), from January 1, 2018, to August 31, 2020, three long-term, short-term memory (LSTM) models were evaluated against five traditional forecasting models.
Findings
The models proposed in this study outperform traditional methods, such that the simplest LSTM model is more accurate than most of the benchmark models in two of the three tested hotels. In particular, the results show that traditional methods are inefficient in hotels with rapid fluctuations of demand and ADR, as observed during the pandemic. In contrast, LSTM models perform more accurately for these hotels.
Research limitations/implications
This study is limited by its use of American data and data from midscale hotels as well as only predicting ADR.
Practical implications
This study produced a reliable, accurate forecasting model considering risk and competitor behavior.
Theoretical implications
This paper extends the application of game theory principles to ADR forecasting and combines it with the concept of risk for forecasting during uncertain times.
Originality/value
This study is the first study, to the best of the authors’ knowledge, to use actual hotel data from the COVID-19 pandemic to determine an appropriate neural network forecasting method for times of uncertainty. The application of Shapley value and operational risk obtained a game-theoretic property-level model, which fits best.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.