Mining is known to be one of the most hazardous occupations in the world. Many serious accidents have occurred worldwide over the years in mining. Although there have been efforts to create a safer work environment for miners, the number of accidents occurring at the mining sites is still significant. Machine learning techniques and predictive analytics are becoming one of the leading resources to create safer work environments in the manufacturing and construction industries. These techniques are leveraged to generate actionable insights to improve decision-making. A large amount of mining safety-related data are available, and machine learning algorithms can be used to analyze the data. The use of machine learning techniques can significantly benefit the mining industry. Decision tree, random forest, and artificial neural networks were implemented to analyze the outcomes of mining accidents. These machine learning models were also used to predict days away from work. An accidents dataset provided by the Mine Safety and Health Administration was used to train the models. The models were trained separately on tabular data and narratives. The use of a synthetic data augmentation technique using word embedding was also investigated to tackle the data imbalance problem. Performance of all the models was compared with the performance of the traditional logistic regression model. The results show that models trained on narratives performed better than the models trained on structured/tabular data in predicting the outcome of the accident. The higher predictive power of the models trained on narratives led to the conclusion that the narratives have additional information relevant to the outcome of injury compared to the tabular entries. The models trained on tabular data had a lower mean squared error compared to the models trained on narratives while predicting the days away from work. The results highlight the importance of predictors, like shift start time, accident time, and mining experience in predicting the days away from work. It was found that the F1 score of all the underrepresented classes except one improved after the use of the data augmentation technique. This approach gave greater insight into the factors influencing the outcome of the accident and days away from work.
Current maintenance intervals of mechanical systems are scheduled a priori based on the life of the system, resulting in expensive maintenance scheduling, and often undermining the safety of passengers. Going forward, the actual usage of a vehicle will be used to predict stresses in its structure, and therefore, to define a specific maintenance scheduling. Machine learning (ML) algorithms can be used to map a reduced set of data coming from real-time measurements of a structure into a detailed/high-fidelity finite element analysis (FEA) model of the same system. As a result, the FEA-based ML approach will directly estimate the stress distribution over the entire system during operations, thus improving the ability to define ad-hoc, safe, and efficient maintenance procedures. The paper initially presents a review of the current state-of-the-art of ML methods applied to finite elements. A surrogate finite element approach based on ML algorithms is also proposed to estimate the time-varying response of a one-dimensional beam. Several ML regression models, such as decision trees and artificial neural networks, have been developed, and their performance is compared for direct estimation of the stress distribution over a beam structure. The surrogate finite element models based on ML algorithms are able to estimate the response of the beam accurately, with artificial neural networks providing more accurate results.
The grain handling industry plays a significant role in U.S. agriculture by storing, distributing, and processing a variety of agricultural commodities. Commercial grain elevators are hazardous agro-manufacturing work environments where workers are prone to severe injuries, due to the nature of the activities and workplace. Safety incidents in agro-manufacturing operations generally arise from a combination of factors, rather than a single cause, therefore, research on occupational incidents must look deeper into identifying the underlying causes, through the application of advanced analyses methods. In occupational safety, it is possible to estimate and predict probability of safety risks through developing artificial neural network predictive models. Due to the significance of safety risk assessment in the design and prioritization of effective prevention measures, this study aimed at classifying and predicting causes of occupational incidents in grain elevator agro-manufacturing operations in the Midwest region of the United States. Workers’ compensation claims data, from 2008 to 2016, were utilized for training multilayer perceptron (MLP) and radial basis function (RBF) neural networks. Both MLP and RBF models could predict the probability of safety risks with a high overall accuracy of 60%, 61%. Based on values of AUC (area under the curve) from the ROC (receiving operating charts), both models predicted the probability of individual safety risks with a high accuracy rate of between 71.5% and 99.2%. In addition, sensitivity analysis showed that nature of injury is the most significant determinant of safety risks probability, along with type of injury. The novelty of this study is the use of the artificial neural network methodology to analyze multi-level causes of occupational incidents as the sources of safety risks in bulk storage facilities. The results confirm that artificial neural networks are useful in safety risk estimation, and identifying the incidents’ risk factors. The implementation of safety measures in grain elevators can help in preventing occupational injuries, saving lives, and reducing the occurrence and severity of such incidents in industrial work environments.
Agribusiness industries are among the most hazardous workplaces for non-fatal occupational injuries. The term “post-incident state” is used to describe the health status of an injured person when a non-fatal occupational injury has occurred, in the post-incident period when the worker returns to work, either immediately with zero days away from work (medical state) or after a disability period (disability state). An analysis of nearly 14,000 occupational incidents in agribusiness operations allowed for the classification of the post-incident state as medical or disability (77% and 23% of the cases, respectively). Due to substantial impacts of occupational incidents on labor-market outcomes, identifying factors that influence the severity of such incidents plays a significant role in improving workplace safety, protecting workers, and reducing costs of the post-incident state of an injury. In addition, the average costs of a disability state are significantly higher than those of a medical state. Therefore, this study aimed to identify the contributory factors to such post-incident states with logistic regression using information from workers’ compensation claims recorded between 2008 and 2016 in the Midwest region of the United States. The logistic regression equation was derived to calculate the odds of disability post-incident state. Results indicated that factors influencing the post-incident state included the injured body parts, injury nature, and worker’s age, experience, and occupation, as well as the industry, and were statistically significant predictors of post-incident states. Specific incidents predicting disability outcomes included being caught in/between/under, fall/slip/trip injury, and strain/injury by. The methodology and estimation results provide insightful understanding of the factors influencing medical/disability injuries, in addition to beneficial references for developing effective countermeasures for prevention of occupational incidents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.