Abstract-This paper presents the development of a highperformance micromachined capacitive accelerometer for detection of sonar waves. The device is intended to replace existing hydrophones in towed array sonar systems, and thus, needs to meet stringent performance requirements on noise, bandwidth, and dynamic range, among others. The in-plane, single-axis accelerometer is designed based on a mode-tuning structural platform. A frame was used instead of a solid plate for the proof-mass of the device, allowing us to push undesired vibration modes beyond the operating bandwidth of the device while enabling us to employ a portion of the area for capacitive sensing elements. The designed accelerometer was fabricated on a silicon-on-insulator wafer with 100µm device layer with capacitive gaps of ~2.2µm. The sensitivity of the accelerometer is 4.0V/g with a noise spectral density of better than /√ . The fundamental resonant frequency of the device is 4.4kHz. The open loop dynamic range of the accelerometer, while operating at atmospheric pressure, is better than 135dB with a cross-axis sensitivity of less than 30dB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.