Currently, mesenchymal stem cells (MSCs) are used in veterinary clinical applications. Bone marrow and adipose tissue are the most common sources of stem cells derived from adult animals. However, cord blood which is collected non-invasively is an alternative source of stem cells other than bone marrow and adipose tissue. Moreover, high availability and lower immunogenicity of umbilical cord blood (UCB) haematopoietic stem cells compared to other sources of stem cell therapy such as bone marrow have made them a considerable source for cell therapy, but MSCs is not highly available in cord blood and their immunogenicity is poorly understood. In this study, the cells with spindle morphology from 7 of 9 bovine UCB samples were isolated and cultured. These mesenchymal stromal cells were successfully differentiated to osteocytes, chondrocytes and adipocytes. In addition, Oct-4 and SH3 were determined by RT-PCR assay. It is the first report of isolation, culture, characterization and differentiation of bovine umbilical stem cells.
Background Although bacterial infections have been recognized as a possible cause of male infertility, the effect of bacterial infections on sperm quality and sperm DNA fragmentation remains controversial. The current study aimed to investigate the prevalence rate of bacterial infection in subfertile men and its effect on semen quality. Seminal fluid was collected from 172 male members of infertile couples attending the andrology infertility center and a group of 35 fertile subjects as a control. Sperm parameters and DNA fragmentation were evaluated based on the type of bacteria in all ejaculates. Results From the 172 patients investigated for infertility, 60 (34.88%) patients had a positive culture for pathogenic bacteria of different species. Leukocytospermia was significantly higher in infected samples in comparison with non-infected samples (p < 0.05). Sperm concentration and motility and morphology were significantly lower in infected than non-infected samples. Moreover, sperm DNA fragmentation was significantly higher in infected than non-infected samples. Besides, our results showed that sperm DNA fragmentation was correlated significantly with leukocytospermia (R: 0.22, p < 0.01). Conclusion The present study suggested that bacterial infection significantly correlated with leukocytospermia could impair male fertility potential through decreasing sperm motility, morphology, and DNA integrity.
In polycystic ovary syndrome (PCOS), substantial genetic and environmental alterations, along with hyperandrogenism, affect the quality of oocytes and decrease ovulation rates. To determine the mechanisms underlying these alterations caused specifically by an increase in plasma androgens, the present study was performed in experimentally-induced PCOS mice. As the study model, female B6D2F1 mice were treated with dehydroepiandrosterone (DHEA, 6mg per 100g bodyweight). After 20 days, oocytes at the germinal vesicle and metaphase II stages were retrieved from isolated ovaries and subsequent analyses of oocyte quality were performed for each mouse. DHEA treatment resulted in excessive abnormal morphology and decreased polar body extrusion rates in oocytes, and was associated with an increase in oxidative stress. Analysis of fluorescence intensity revealed a significant reduction of DNA methylation and dimethylation of histone H3 at lysine 9 (H3K9) in DHEA-treated oocytes, which was associated with increased acetylation of H4K12. Similarly, mRNA expression of DNA methyltransferase-1 and histone deacetylase-1 was significantly decreased in DHEA-treated mice. There was a significant correlation between excessive reactive oxygen species (ROS) production and increased histone acetylation, which is a novel finding and may provide new insights into the mechanism causing PCOS. The results of the present study indicate that epigenetic modifications of oocytes possibly affect the quality of maturation and ovulation rates in PCOS, and that the likely mechanism may be augmentation of intracytoplasmic ROS.
Reproductive senescence is accompanied by a reduced number and quality of ovarian follicles in response to the accumulation of free radicals and the process of apoptosis. Having selected mice as models, we examined the hypothesis that curcumin as an antioxidant and anti-inflammatory agent might prevent or retard ovarian aging. Female NMRI 21-day-old mice were divided into control, vehicle and curcumin groups. In the treatment group the mice received curcumin at 100mgkg–1day–1 intraperitoneally. After 6, 12 and 33 weeks several parameters were examined including ovarian reserve, oocyte quality, oxidative status, invitro fertilisation and expression of ovulation-related (growth differentiation factor 9 (GDF-9) and bone morphogenetic protein 15 (BMP-15)) and anti-aging-related (sirtuin 1 (SIRT-1) and SIRT-3) genes. Curcumin treatment up to 12 and 33 weeks resulted in increased ovarian volume and number of follicles and was associated with elevated anti-Müllerian hormone and oestrogen and diminished FSH serum levels. Furthermore, enhanced oocyte maturation, fertilisation and embryo development plus reduced oxidative stress were seen in the curcumin group. Also, the expression of GDF-9, BMP-15, SIRT-1 and SIRT-3 genes was increased in the curcumin group. Concerning gestational age, the findings of the study suggested that administration of curcumin could delay the process of oocyte aging in a mouse model.
The outcome of in vitro maturation (IVM) in the patients with polycystic ovary syndrome (PCOS) is poor. Abnormal intraovarian paracrine interplay alters microenvironment for oocyte development through folliculogenesis and decreases developmental competence of oocytes in patients with PCOS. Mesenchymal stromal cells (MSCs) secrete a variety of cytokines and growth factors that could promote oocyte maturation in vitro. Thus, in the current study we aimed to evaluate the effect of human bone marrow MSC-conditioned media (hBM-MSC-CM), as a supplement, to enrich IVM medium for PCOS germinal vesicles (GVs). For this purpose, oocytes at GV and metaphase II (MII) stages were harvested from PCOS mice. The GVs were randomly divided into four groups and incubated for 24 hours in an IVM medium (TCM199, as the control group) or TCM199 supplemented by 25%, 50%, and 75% of hBM-MSC-CM (PCOS-CM25, PCOS-CM50, and PCOS-CM75 groups, respectively) so as to evaluate which dose(s) could enhance maturation rate of the GVs and their subsequent in vitro fertilization (IVF) outcome. Furthermore, MII oocytes and their subsequent IVF outcome were considered as the in vivo matured (PCOS-IVO) group. The data showed that supplementation of IVM medium with 50% hBM-MSC-CM significantly increased cytoplasmic and nuclear maturation of the GVs (P < 0.001), and also fertilization and two-cell rate (P < 0.001) and blastocyst formation (P < 0.01) of in vitro matured oocytes from mice with PCOS. Overall, higher oocyte maturation and fertilization outcome in PCOS-CM50 group proposed that enrichment of IVM medium with hBM-MSC-CM could be considered as a promising approach to improve IVM of PCOS oocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.