Cytochrome b5 reductase is a flavoprotein that is produced as two different isoforms that have different localizations. The amphipathic microsomal isoform, found in all cell types with the exception of erythrocytes, consists of one hydrophobic membrane-anchoring domain and a larger hydrophilic flavin catalytic domain. The soluble cytochrome b5 reductase isoform, found in human erythrocytes, is a truncated protein that is encoded by an alternative transcript and consists of the larger domain only. Cytochrome b5 reductase is involved in the transfer of reducing equivalents from the physiological electron donor, NADH, via an FAD domain to the small molecules of cytochrome b5. This protein has received much attention from researchers due to its involvement in many oxidation and reduction reactions, such as the reduction of methemoglobin to hemoglobin. Autosomal cytochrome b5 reductase gene deficiency manifests with the accumulation of oxidized Fe+3 and recessive congenital methemoglobinemia in humans. In this article, we provide a comprehensive overview of the structure and function of cytochrome b5 reductase from different eukaryotic sources and its potential use in the food industry, biosensor, and diagnostic areas.
Although siRNA is a promising technology for cancer gene therapy, effective cytoplasmic delivery has remained a significant challenge. In this paper, a potent siRNA transfer system with active targeting moieties toward cancer cells and a high loading capacity is introduced to inhibit drug resistance. Mesoporous silica nanoparticles are of great potential for developing targeted gene delivery. Amino-modified MSNs (NH2-MSNs) were synthesized using a modified sol–gel method and characterized by FTIR, BET, TEM, SEM, X-ray diffraction, DLS, and 1H-NMR. MDR1-siRNA was loaded within NH2-MSNs, and the resulting negative surface was capped by functionalized chitosan as a protective layer. Targeting moieties such as TAT and folate were anchored to chitosan via PEG-spacers. The loading capacity of siRNA and the protective effect of chitosan for siRNA were determined by gel retardation assay. MTT assay, flow cytometry, real-time PCR, and western blot were performed to study the cytotoxicity, cellular uptake assay, targeting evaluation, and MDR1 knockdown efficiency. The synthesized NH2-MSNs had a particle size of ≈ 100 nm and pore size of ≈ 5 nm. siRNA was loaded into NH2-MSNs with a high loading capacity of 20% w/w. Chitosan coating on the surface of siRNA-NH2-MSNs significantly improved the siRNA protection against enzyme activity compared to naked siRNA-NH2-MSNs. MSNs and modified MSNs did not exhibit significant cytotoxicity at therapeutic concentrations in the EPG85.257-RDB and HeLa-RDB lines. The folate-conjugated nanoparticles showed a cellular uptake of around two times higher in folate receptor-rich HeLa-RDB than EPG85.257-RDB cells. The chitosan-coated siRNA-NH2-MSNs produced decreased MDR1 transcript and protein levels in HeLa-RDB by 0.20 and 0.48-fold, respectively. The results demonstrated that functionalized chitosan-coated siRNA-MSNs could be a promising carrier for targeted cancer therapy. Folate-targeted nanoparticles were specifically harvested by folate receptor-rich HeLa-RDB and produced a chemosensitized phenotype of the multidrug-resistant cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.