The study here presents laboratory testing results of Class F fly ash geopolymer for oil well cementing applications. The challenge reported in literature for the short thickening time of geopolymer ash has been overcome in this study, where more than 5 h of the thickening time is achievable. API Class H Portland cement used a controller on all the tests conducted in this work. Tests conducted in this research include unconfined compressive strength (UCS), shear bond strength, thickening time, shrinkage, free water, and cyclic and durability tests. Results indicate temperature as a crucial factor affecting the thickening time of geopolymer mix slurry. UCS testing indicates considerably higher compressive strength after one and fourteen days of curing for geopolymer mixtures. This indicates gaining strength with time for geopolymer mixture, where time retrogression effects are observed for Portland cements. Results also indicate higher shear bond strength for geopolymer mix that can better tolerate debonding issues. Additionally, more ductile material behavior and higher fracture toughness were observed for optimum geopolymer mixes. Tests also show applicability of these materials for deviated wells as a zero free water test was observed.
The ability to optimize drilling procedures and economics involves simulation to understand the effects operational parameters and equipment design have on the ROP. An analysis applying drilling performance modeling to optimize drilling operations has been conducted to address this issue. This study shows how optimum operational parameters and equipment can be predicted by simulating drilling operations of preexisting wells in a Northwest Louisiana field. Reference well data was gathered and processed to predict the “drillability” of the formations encountered by inverting bit specific ROP models to solve for rock strength. The output data generated for the reference well was formatted to simulate upcoming wells. A comparative analysis was conducted between the predicted results and the actual results to show the accuracy of the simulation. A significant higher accuracy is shown between the simulated and actual drilling results. Once simulations were validated, optimum drilling parameters and equipment specifications were found by varying different combinations of weight on bit (WOB), rotary speed (RPM), hydraulics, and bit specifications until the highest drilling rate is achieved for each well. A qualitative and quantitative analysis of the optimized results was conducted to assess the potential operational and economic benefits on drilling operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.