This paper proposes two different health-aware economic predictive control strategies that aim at minimizing the damage of components in a pasteurization plant. The damage is assessed with a rainflow-counting algorithm that allows estimating the components’ fatigue. By using the results obtained from this algorithm, a simplified model that characterizes the health of the system is developed and integrated into the predictive controller. The overall control objective is modified by adding an extra criterion that takes into account the accumulated damage. The first strategy is a single-layer predictive controller with an integral action to eliminate the steady-state error that appears when adding the extra criterion. In order to achieve the best minimal accumulated damage and operational costs, the single-layer approach is improved with a multi-layer control scheme, where the solution of the dynamic optimization problem is obtained from the model in two different time scales. Finally, to achieve the advisable trade-off between minimal accumulated damage and operational costs, both control strategies are compared in simulation over a utility-scale pasteurization plant.
This paper proposes a health-aware control approach for drinking water transport networks. This approach is based on an economic model predictive control (MPC) that considers an additional goal with the aim of extending the components and system reliability. The components and system reliability are incorporated into the MPC model using a Linear Parameter Varying (LPV) modeling approach. The MPC controller uses additionally an economic objective function that determines the optimal filling/emptying sequence of the tanks considering that electricity price varies between day and night and that the demand also follows a 24-h repetitive pattern. The proposed LPV-MPC control approach allows considering the model nonlinearities by embedding them in the parameters. The values of these varying parameters are updated at each iteration taking into account the new values of the scheduling variables. In this way, the optimization problem associated with the MPC problem is solved by means of Quadratic Programming (QP) to avoid the use of nonlinear programming. This iterative approach reduces the computational load compared to the solution of a nonlinear optimization problem. A case study based on the Barcelona water transport network is used for assessing the proposed approach performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.