Supergrid graphs contain grid graphs and triangular grid graphs as their subgraphs. The Hamiltonian cycle and path problems for general supergrid graphs were known to be NP-complete. A graph is called Hamiltonian if it contains a Hamiltonian cycle, and is said to be Hamiltonian connected if there exists a Hamiltonian path between any two distinct vertices in it. In this paper, we first prove that every L-shaped supergrid graph always contains a Hamiltonian cycle except one trivial condition. We then verify the Hamiltonian connectivity of L-shaped supergrid graphs except few conditions. The Hamiltonicity and Hamiltonian connectivity of L-shaped supergrid graphs can be applied to compute the minimum trace of computerized embroidery machine and 3D printer when a L-like object is printed. Finally, we present a linear-time algorithm to compute the longest (s, t)-path of L-shaped supergrid graph given two distinct vertices s and t.
In this paper, we give the necessary and sufficient conditions for the existence of Hamiltonian paths in L−alphabet and C−alphabet grid graphs. We also present a linear-time algorithm for finding Hamiltonian paths in these graphs.
In this paper, first we give a sequential linear-time algorithm for the longest path problem in meshes. This algorithm can be considered as an improvement of [13]. Then based on this sequential algorithm, we present a constanttime parallel algorithm for the problem which can be run on every parallel machine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.