In recent years, the rapid growth of Massive Open Online Courses (MOOCs) has attracted much attention for related research. Besides, one of the main challenges in MOOCs is the high dropout or low completion rate. Early dropout prediction algorithms aim the educational institutes to retain the students for the related course. There are several methods for identification of the resigning students. These methods are often based on supervised machine learning, and require student activity records to train and create a prediction model based on the features extracted from the raw data. The performance of graph-based algorithms in various applications to discover the strong or weak relationships between entities using limited data encouraged us to turn to these algorithms for this problem. Objective of this paper is proposing a novel method with low complexity, negative link prediction algorithm, for the first time, utilizing only network topological data for dropout prediction. The idea is based on the assumption that entities with similar network structures are more likely to establish or remove a relation. Therefore, we first convert the data into a graph, mapping entities (students and courses) to nodes and relationships (enrollment data) to links. Then we use graph-based algorithms to predict students' dropout, utilizing just enrollment data. The experimental results demonstrate that the proposed method achieves significant performance compared to baseline ones. However, we test the supervised link prediction idea, and show the competitive and promising results in this case as well. Finally, we present important future research directions to improve the results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.