In this study, a microfluidic cantilever flow sensor was designed and manufactured to monitor liquid flow rate within the range of 100–1000 µl/min. System simulation was also performed to determine the influential optimal parameters and compare the results with experimental data. A flowmeter was constructed as a curved cantilever with dimensions of 6.9 × 0.5 × 0.6 mm3 and a microchannel carved with a CO2 laser inside the cantilever beam. The fabrication substance was Polydimethylsiloxane. Different flow rates were injected using a syringe pump to test the performance of the flowmeter. Vertical displacement of the cantilever was measured in each flowrate using a digital microscope. According to the results, the full-scale overall device accuracy was up to ± 1.39%, and the response time of the sensor was measured to be 6.3 s. The microchip sensitivity was 0.126 µm/(µl/min) in the range of measured flow rates. The sensor could also be utilized multiple times with an acceptable error value. The experimental data obtained by the constructed microchip had a linear trend (R2 = 0.995) and were of good consistency with simulation results. Furthermore, according to the experimental and the simulation data, the initially curved cantilever structure had a higher bending and sensitivity level than a perfectly straight cantilever construction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.