Melatonin is a ubiquitous indole amine that plays a fundamental role in the regulation of the biological rhythm. Disrupted circadian rhythm alters the expression of clock genes and deregulates oncogenes, which finally promote tumor development andprogression. An evidence supporting this notion is the higher risk of developing malignancies among night shift workers. Circadian secretion of the pineal hormone also synchronizes the immune system via a reciprocal association that exists between the immune system and melatonin. Immune cells are capable of melatonin biosynthesis in addition to the expression of its receptors. Melatonin induces big changes in different immune cell proportions, enhances their viability and improves immune cell metabolism in the tumor microenvironment. These effects might be directly mediated by melatonin receptors or indirectly through alterations in hormonal and cytokine release. Moreover, melatonin induces apoptosis in tumor cells via the intrinsic and extrinsic pathways of apoptosis, while it protectsthe immune cells. In general, melatonin has a profound impact on immune cell trafficking, cytokine production and apoptosis induction in malignant cells. On such a basis, using melatonin and resynchronization of sleep cycle may have potential implications in immune function enhancement against malignancies, which will be the focus of the present paper.
AimsAcute myeloblastic leukemia (AML) is the most common type of acute leukemia in adults. Despite numerous treatment strategies including chemotherapy and radiotherapy, a large number of patients do not respond to treatment and experience relapse. The main problem of these patients is the development of resistance to anti-cancer drugs. Therefore, any endeavor to reduce drug resistance in these patients is of high priority. In general, several mechanisms such as changes in drug metabolic pathways, drug inactivation, drug target alterations and reduced drug accumulation in the cells contribute to drug resistance of cancer cells. In this context, evidence suggests that exosomes could reduce drug resistance by removing drugs from their parent cells. In the present study, we aimed to investigate the effects of exosome release inhibition on the resistance of U937 cells to PEGylated liposomal doxorubicin (PLD).Main MethodsIn order to find a suitable ABCG2 (ATP-binding cassette sub-family G member 2) transporter substrate, virtual screening was performed among a list of drugs used in leukemia and PLD was selected. U937 cells were treated with PLD with/without co-treatment with the exosome release inhibitor, GW4869. Released exosomes within different study groups were isolated and characterized to determine the differences between groups. Doxorubicin presence in the isolated exosomes was also measured by high performance liquid chromatography (HPLC) to confirm drug export through the exosomes. Finally, the effect of exosome inhibition on the cytotoxicity of PLD on U937 cells was determined using different cytotoxicity assays including the standard lactate dehydrogenase (LDH) release assay and the flow cytometric analysis of apoptotic and non-apoptotic cell death.Key FindingsGW4869 treatment caused a significant decrease in the exosome release of U937 cells compared to the untreated cells, as evidenced by the reduction of the protein content of the isolated exosomes (P<0.05). Co-treatment with GW4869 significantly increased cytotoxic cell death in the groups treated with 0.5 and 1 µM PLD, compared to the same groups without GW4869 co-treatment (P<0.05). Interestingly, co-treatment with GW4896 and 0.5 µM PLD was enough to induce the same cytotoxic effect as that of the sole 1 µM PLD group.SignificanceOur findings showed that U937 cells increase their resistance against the cytotoxic effects of PLD through the exosome-mediated expelling of the drug. Inhibition of exosome release could prevent PLD efflux and consequently increase the vulnerability of the U937 cells to the cytotoxic effects of PLD. Our results along with prior studies indicate that the integration of exosome release inhibitors into the common PLD-containing chemotherapy regimens could significantly lower the required concentrations of the drug and consequently reduce its associated side effects. Further studies are warranted to identify clinically safe inhibitors and investigate their clinical efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.