Autosomal recessive (AR) gene defects are the leading genetic cause of intellectual disability (ID) in countries with frequent parental consanguinity, which account for about 1/7th of the world population. Yet, compared to autosomal dominant de novo mutations, which are the predominant cause of ID in Western countries, the identification of AR-ID genes has lagged behind. Here, we report on whole exome and whole genome sequencing in 404 consanguineous predominantly Iranian families with two or more affected offspring. In 219 of these, we found likely causative variants, involving 77 known and 77 novel AR-ID (candidate) genes, 21 X-linked genes, as well as 9 genes previously implicated in diseases other than ID. This study, the largest of its kind published to date, illustrates that high-throughput DNA sequencing in consanguineous families is a superior strategy for elucidating the thousands of hitherto unknown gene defects underlying AR-ID, and it sheds light on their prevalence.
In outbred Western populations, most individuals with intellectual disability (ID) are sporadic cases, dominant de novo mutations (DNM) are frequent, and autosomal recessive ID (ARID) is very rare. Because of the high rate of parental consanguinity, which raises the risk for ARID and other recessive disorders, the prevalence of ID is significantly higher in near‐ and middle‐east countries. Indeed, homozygosity mapping and sequencing in consanguineous families have already identified a plethora of ARID genes, but because of the design of these studies, DNMs could not be systematically assessed, and the proportion of cases that are potentially preventable by avoiding consanguineous marriages or through carrier testing is hitherto unknown. This prompted us to perform whole‐exome sequencing in 100 sporadic ID patients from Iran and their healthy consanguineous parents. In 61 patients, we identified apparently causative changes in known ID genes. Of these, 44 were homozygous recessive and 17 dominant DNMs. Assuming that the DNM rate is stable, these results suggest that parental consanguinity raises the ID risk about 3.6‐fold, and about 4.1 to 4.25‐fold for children of first‐cousin unions. These results do not rhyme with recent opinions that consanguinity‐related health risks are generally small and have been “overstated” in the past.
Hereditary nonpolyposis colorectal cancer or Lynch syndrome is autosomal dominant cancer predisposition syndrome characterized by early onset of colorectal cancer and neoplasia in other organs. This condition typically caused by germline mutations in the mismatch repair genes
MLH1
,
MSH2
,
MSH6
, and
PMS2
. To date, a considerable number of
MLH1
gene mutations have been found to be associated with Lynch syndrome. We were aimed at identifying a genetic mutation in an extended Iranian family affected by Lynch syndrome-related cancers. Here, we applied whole-exome sequencing to identifying mutation in the proband. Furthermore, we applied Sanger sequencing to validate the candidate variant. We found a heterozygous novel single nucleotide deletion (c.206delG) in the exon two of the
MLH1
gene in the proband. Also, Sanger sequencing analysis showed that this mutation has segregated in all affected family members. The mutation (c.206delG:p.R69fs) may create a premature stop codon followed by the formation of a truncated (p.R69fs) Mlh1 protein. Our findings expand the mutational spectra of
MLH1
gene related Lynch syndrome which is vital for screening and genetic diagnosis of the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.