The early-life microbiome is gaining appreciation as a major influencer in human development and long-term health. Multiple factors are known to influence the initial colonization, development, and function of the neonatal gut microbiome. In addition, alterations in early-life gut microbial composition is associated with several chronic health conditions such as obesity, asthma, and allergies. In this review, we focus on both maternal and infant factors known to influence early-life gut colonization. Also reviewed is the important role of infant feeding, including evidence-based strategies for maternal and infant supplementation with the goal to protect and/or restore the infant gut microbiome.
In this mini-review several commonly used animal models of atherosclerosis have been discussed. Among them, emphasis has been made on mice, rabbits, pigs and non-human primates. Although these animal models have played a significant role in our understanding of induction of atherosclerotic lesions, we still lack a reliable animal model for regression of the disease. Researchers have reported several genetically modified and transgenic animal models that replicate human atherosclerosis, however each of current animal models have some limitations. Among these animal models, the apolipoprotein (apo) E-knockout (KO) mice have been used extensively because they develop spontaneous atherosclerosis. Furthermore, atherosclerotic lesions developed in this model depending on experimental design may resemble humans' stable and unstable atherosclerotic lesions. This mouse model of hypercholesterolemia and atherosclerosis has been also used to investigate the impact of oxidative stress and inflammation on atherogenesis. Low density lipoprotein (LDL)-r-KO mice are a model of human familial hypercholesterolemia. However, unlike apo E-KO mice, the LDL-r-KO mice do not develop spontaneous atherosclerosis. Both apo E-KO and LDL-r-KO mice have been employed to generate other relevant mouse models of cardiovascular disease through breeding strategies. In addition to mice, rabbits have been used extensively particularly to understand the mechanisms of cholesterol-induced atherosclerosis. The present review paper details the characteristics of animal models that are used in atherosclerosis research.
Cholesterol plays a vital role in cell biology. Dietary cholesterol or "exogenous" cholesterol accounts for approximately one-third of the pooled body cholesterol, and the remaining 70% is synthesized in the body (endogenous cholesterol). Increased dietary cholesterol intake may result in increased serum cholesterol in some individuals, while other subjects may not respond to dietary cholesterol. However, diet-increased serum cholesterol levels do not increase the low-density lipoprotein/high-density lipoprotein (LDL/HDL) cholesterol ratio, nor do they decrease the size of LDL particles or HDL cholesterol levels. Elevated levels of LDL cholesterol, reduced HDL cholesterol levels, and small, dense LDL particles are independent risk factors for coronary artery disease. Dietary cholesterol is the primary approach for treatment of conditions such as the Smith-Lemli-Opitz syndrome. Recent studies have highlighted mechanisms for absorption of dietary cholesterol. These studies have help understand how dietary and/or pharmaceutical agents inhibit cholesterol absorption and thereby reduce LDL cholesterol concentrations. In this article, various aspects of cholesterol metabolism, including dietary sources, absorption, and abnormalities in cholesterol metabolism, have been summarized and discussed.
Wild rice (Zizania spp.) seems to have originated in North America and then dispersed into Eastern Asia and other parts of the world. Nutritional analysis shows that wild rice is rich in minerals, vitamins, protein, starch, dietary fiber, and various antioxidant phytochemicals, while it is low in fat. Wild rice has been recognized as a whole grain by the US Food and Drug Administration; in the North American marketplace it is currently sold as and considered to be a health-promoting food. Recent scientific studies have revealed antioxidant and lipid-lowering properties of wild rice, while others have documented cardiovascular benefits associated with the long-term consumption of wild rice in experimental settings. The present review article summarizes various features of wild rice and its cultivation, including its plantation, harvest, nutritional composition, and biological properties. While evidence for the cardiovascular benefits of wild rice consumption is accumulating, additional studies are warranted to determine the clinical benefits of regular consumption of wild rice.
This study highlighted a booster cytotoxic effect of combined rolipram and bevacizumab treatment on the GCSCs primary culture, suggesting that this approach is warranted in treatment of GBMs overexpressing VEGF and PDE4A.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.