A new multi-component reaction for the synthesis of novel and diverse spiro-imidazo pyridine-indene derivatives named spiro[imidazo[1,2-a]indeno[2,1-e]pyridine-5,1′-indene and indenylidene-1H-spiro[imidazo[1,2-a]pyridine-7,1′-indene was successfully developed by the reaction between heterocyclic ketene aminals (generated from 1,1-bis(methylthio)-2-nitro ethylene and diamine) and [1,2′-biindenylidene]-1′,3,3′-trione (bindone) (in situ generated from self-condensation of 1,3-indandion) by using malononitrile as a promoter or as one of the precursors respectively in the presence of p-TSA as the acid catalyst in EtOH as reaction medium under reflux conditions. Depending on whether the reaction is single-step or two-step, malononitrile can act as a promoter or reactant. The convenient one-pot operation, straightforward isolation without using additional purification methods, and the use of a variety of diamines and cysteamine hydrochloride causing a variety of structural products are attractive aspects of the present approach. The synthesized bindone and final product contains active methylene and this active site can be involved in further reactions to synthesize more complex heterocycles.
A new multi-component reaction for the synthesis of novel and diverse spiro-imidazo pyridine-indene derivatives named spiro[imidazo[1,2-a]indeno[2,1-e]pyridine-5,1'-indene and indenylidene-1H-spiro[imidazo[1,2-a]pyridine-7,1'-indene was successfully developed by the reaction between heterocyclic ketene aminals (generated from 1,1-bis(methylthio)-2-nitro ethylene and diamine) and [1,2′-biindenylidene]-1′,3,3′-trione (bindone) (in situ generated from self-condensation of 1,3-indandion) by using malononitrile as a promoter or as one of the precursors respectively in the presence of p-TSA as the acid catalyst in EtOH as reaction medium under reflux conditions. Depending on whether the reaction is single-step or two-step, malononitrile can act as a promoter or reactant. The convenient one-pot operation, straightforward isolation without using additional purification methods, and the use of a variety of diamines and cysteamine hydrochloride causing a variety of structural products are attractive aspects of the present approach. The synthesized final product contains active methylene and this active site can be involved in further reactions to synthesize more complex heterocycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.